Sales & Support: +44 (0)1223 316 855

TransIT-BrCa citations

Chantalat, E., Boudou, F., Laurell, H., Palierne, G., Houtman, R., Melchers, D., Rochaix, P., Filleron, T., Stella, A., Burlet-Schiltz, O., Brouchet, A., Flouriot, G., Métivier, R., Arnal, J.-F., Fontaine, C. and Lenfant, F. (2016). The AF-1-deficient estrogen receptor ERα46 isoform is frequently expressed in human breast tumors. Breast Cancer Research, 18(1). Available at:https://breast-cancer-research.biomedcentral.com/articles/10.1186/s13058-016-0780-7 [Accessed 9 Mar. 2020].

Ebelt, N.D., Kaoud, T.S., Edupuganti, R., Van Ravenstein, S., Dalby, K.N. and Van Den Berg, C.L. (2017). A c-Jun N-terminal kinase inhibitor, JNK-IN-8, sensitizes triple negative breast cancer cells to lapatinib. Oncotarget, [online] 8(62), pp.104894–104912. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29285221 [Accessed 9 Mar. 2020].

Li, C., Zheng, L., Xin, Y., Tan, Z., Zhang, Y., Meng, X., Wang, Z. and Xi, T. (2017). The competing endogenous RNA network of CYP4Z1 and pseudogene CYP4Z2P exerts an anti-apoptotic function in breast cancer. FEBS letters, [online] 591(7), pp.991–1000. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28236635 [Accessed 9 Mar. 2020].

Lin, J., Chung, S., Ueda, K., Matsuda, K., Nakamura, Y. and Park, J.-H. (2017). GALNT6 Stabilizes GRP78 Protein by O-glycosylation and Enhances its Activity to Suppress Apoptosis Under Stress Condition. Neoplasia (New York, N.Y.), [online] 19(1), pp.43–53. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28110670 [Accessed 9 Mar. 2020].

Linne, H., Yasaei, H., Marriott, A., Harvey, A., Mokbel, K., Newbold, R. and Roberts, T. (2017). Functional role of SETD2, BAP1, PARP-3 and PBRM1 candidate genes on the regulation of hTERT gene expression. Oncotarget, [online] 8(37), pp.61890–61900. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28977912 [Accessed 9 Mar. 2020].

Mohammed, H.N., Pickard, M.R. and Mourtada-Maarabouni, M. (2016). The protein phosphatase 4 - PEA15 axis regulates the survival of breast cancer cells. Cellular Signalling, [online] 28(9), pp.1389–1400. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27317964 [Accessed 9 Mar. 2020].

Ventura-Bixenshpaner, H., Asraf, H., Chakraborty, M., Elkabets, M., Sekler, I., Taylor, K.M. and Hershfinkel, M. (2018). Enhanced ZnR/GPR39 Activity in Breast Cancer, an Alternative Trigger of Signaling Leading to Cell Growth. Scientific Reports, [online] 8(1), pp.1–15. Available at: https://www.nature.com/articles/s41598-018-26459-5 [Accessed 9 Mar. 2020].

Zheng, L., Meng, X., Li, X., Zhang, Y., Li, C., Xiang, C., Xing, Y., Xia, Y. and Xi, T. (2018a). miR-125a-3p inhibits ERα transactivation and overrides tamoxifen resistance by targeting CDK3 in estrogen receptor–positive breast cancer. The FASEB Journal, 32(2), pp.588–600. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28939591 [Accessed 9 Mar. 2020].

Zheng, L., Xiang, C., Li, X., Guo, Q., Gao, L., Ni, H., Xia, Y. and Xi, T. (2018b). STARD13-correlated ceRNA network-directed inhibition on YAP/TAZ activity suppresses stemness of breast cancer via co-regulating Hippo and Rho-GTPase/F-actin signaling. Journal of Hematology & Oncology, [online] 11. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977742/ [Accessed 9 Mar. 2020].

Zheng, L., Zhang, Z., Zhang, S., Guo, Q., Zhang, F., Gao, L., Ni, H., Guo, X., Xiang, C. and Xi, T. (2018c). RNA Binding Protein RNPC1 Inhibits Breast Cancer Cell Metastasis via Activating STARD13-Correlated ceRNA Network. Molecular Pharmaceutics, [online] 15(6), pp.2123–2132. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29733656 [Accessed 9 Mar. 2020].