Sales & Support: +44 (0)1223 316 855

Global DNA Methylation ELISA Kit citations

Creppy, E.E., Diallo, A., Moukha, S., Eklu-Gadegbeku, C. and Cros, D. (2014). Study of epigenetic properties of Poly(HexaMethylene Biguanide) hydrochloride (PHMB). International Journal of Environmental Research and Public Health, [online] 11(8), pp.8069–8092. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25111876 [Accessed 16 Sep. 2020].

Holubek, R., Deckert, J., Zinicovscaia, I., Yushin, N., Vergel, K., Frontasyeva, M., Sirotkin, A.V., Bajia, D.S. and Chmielowska-Bąk, J. (2020). The Recovery of Soybean Plants after Short-Term Cadmium Stress. Plants (Basel, Switzerland), [online] 9(6). Available at: https://pubmed.ncbi.nlm.nih.gov/32580460/ [Accessed 16 Sep. 2020].

Jarmasz, J.S., Stirton, H., Davie, J.R. and Del Bigio, M.R. (2019). DNA methylation and histone post-translational modification stability in post-mortem brain tissue. Clinical Epigenetics, 11(1).

Jefferson, W.N., Chevalier, D.M., Phelps, J.Y., Cantor, A.M., Padilla-Banks, E., Newbold, R.R., Archer, T.K., Kinyamu, H.K. and Williams, C.J. (2013). Persistently altered epigenetic marks in the mouse uterus after neonatal estrogen exposure. Molecular Endocrinology (Baltimore, Md.), [online] 27(10), pp.1666–1677. Available at: http://www.ncbi.nlm.nih.gov/pubmed/?term=Persistently+Altered+Epigenetic+Marks+in+the+Mouse+Uterus+After+Neonatal+Estrogen+Exposure [Accessed 16 Sep. 2020].

Kurdyukov, S. and Bullock, M. (2016). DNA Methylation Analysis: Choosing the Right Method. Biology, 5(1), p.3.

Lynch, E.W.J., Coyle, C.S., Lorgen, M., Campbell, E.M., Bowman, A.S. and Stevenson, T.J. (2016). Cyclical DNA Methyltransferase 3a Expression Is a Seasonal and Estrus Timer in Reproductive Tissues. Endocrinology, [online] 157(6), pp.2469–2478. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27105384 [Accessed 16 Sep. 2020].

Manzoni, E.F.M., Pennarossa, G., deEguileor, M., Tettamanti, G., Gandolfi, F. and Brevini, T.A.L. (2016). 5-azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts. Scientific Reports, [online] 6(1). Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5107985/ [Accessed 7 Feb. 2020].

Mungala Lengo, A., Guiraut, C., Mohamed, I. and Lavoie, J.-C. (2020). Relationship between redox potential of glutathione and DNA methylation level in liver of newborn guinea pigs. Epigenetics, [online] pp.1–13. Available at: https://pubmed.ncbi.nlm.nih.gov/32594836/ [Accessed 16 Sep. 2020].

Onishi, A., Sugiyama, H., Kitagawa, M., Yamanari, T., Tanaka, K., Ogawa-Akiyama, A., Kano, Y., Mise, K., Tanabe, K., Morinaga, H., Kinomura, M., Uchida, H.A. and Wada, J. (2019). Urine 5MedC, a Marker of DNA Methylation, in the Progression of Chronic Kidney Disease. [online] Disease Markers. Available at: https://www.hindawi.com/journals/dm/2019/5432453/ [Accessed 16 Sep. 2020].

Pennarossa, G., Manzoni, E.F.M., Ledda, S., deEguileor, M., Gandolfi, F. and Brevini, T.A.L. (2019). Use of a PTFE Micro-Bioreactor to Promote 3D Cell Rearrangement and Maintain High Plasticity in Epigenetically Erased Fibroblasts. Stem cell reviews and reports, [online] 15(1), pp.82–92. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30397853.

Pennarossa, G., Paffoni, A., Ragni, G., Gandolfi, F. and Brevini, T.A.L. (2020). Rho Signaling-Directed YAP/TAZ Regulation Encourages 3D Spheroid Colony Formation and Boosts Plasticity of Parthenogenetic Stem Cells. Advances in Experimental Medicine and Biology, [online] 1237, pp.49–60. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31376140 [Accessed 16 Sep. 2020].

Pennarossa, G., Santoro, R., Manzoni, E.F.M., Pesce, M., Gandolfi, F. and Brevini, T.A.L. (2017). Epigenetic Erasing and Pancreatic Differentiation of Dermal Fibroblasts into Insulin-Producing Cells are Boosted by the Use of Low-Stiffness Substrate. Stem Cell Reviews and Reports, [online] 14(3), pp.398–411. Available at: https://link.springer.com/article/10.1007%2Fs12015-017-9799-0.

Quintanilla-Mena, M., Gold-Bouchot, G., Zapata-Pérez, O., Rubio-Piña, J., Quiroz-Moreno, A., Vidal-Martínez, V.M., Aguirre-Macedo, M.L. and Puch-Hau, C. (2020). Biological responses of shoal flounder (Syacium gunteri) to toxic environmental pollutants from the southern Gulf of Mexico. Environmental Pollution (Barking, Essex: 1987), [online] 258, p.113669. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31806456 [Accessed 16 Sep. 2020].

Shah, S.M., Saini, N., Ashraf, S., Singh, M.K., Manik, R.S., Singla, S.K., Palta, P. and Chauhan, M.S. (2015). RETRACTED: Bone morphogenetic protein 4 (BMP4) induces buffalo (Bubalus bubalis) embryonic stem cell differentiation into germ cells. Biochimie, [online] 119, pp.113–124. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26529649 [Accessed 16 Sep. 2020].

Shah, S.M., Saini, N., Singh, M.K., Manik, R., Singla, S.K., Palta, P. and Chauhan, M.S. (2016). Testicular cell-conditioned medium supports embryonic stem cell differentiation toward germ lineage and to spermatocyte- and oocyte-like cells. Theriogenology, [online] 86(3), pp.715–729. Available at: https://pubmed.ncbi.nlm.nih.gov/27056417/ [Accessed 16 Sep. 2020].

Shah, S.M., Singla, S.K., Palta, P., Manik, R.S. and Chauhan, M.S. (2017). Retinoic acid induces differentiation of buffalo (Bubalus bubalis) embryonic stem cells into germ cells. Gene, [online] 626, pp.358–366. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28526652 [Accessed 16 Sep. 2020].