Sales & Support: +44 (0)1223 316 855

TransIT-LT1 citations

Adams, J., Feuerborn, M., Molina, J.A., Wilden, A.R., Adhikari, B., Budden, T. and Lee, S.Y. (2019). Autophagy–lysosome pathway alterations and alpha-synuclein up-regulation in the subtype of neuronal ceroid lipofuscinosis, CLN5 disease. Scientific Reports, [online] 9(1), pp.1–12. Available at: https://www.nature.com/articles/s41598-018-36379-z [Accessed 27 Feb. 2020].

Adhikari, B., De Silva, B., Molina, J.A., Allen, A., Peck, S.H. and Lee, S.Y. (2019). Neuronal Ceroid Lipofuscinosis Related ER Membrane Protein CLN8 Regulates PP2A Activity and Ceramide Levels. [online] Biochimica et biophysica acta. Molecular basis of disease. Available at: https://pubmed.ncbi.nlm.nih.gov/30453012-neuronal-ceroid-lipofuscinosis-related-er-membrane-protein-cln8-regulates-pp2a-activity-and-ceramide-levels/ [Accessed 27 Feb. 2020].

Balmus, G., Pilger, D., Coates, J., Demir, M., Sczaniecka-Clift, M., Barros, A.C., Woods, M., Fu, B., Yang, F., Chen, E., Ostermaier, M., Stankovic, T., Ponstingl, H., Herzog, M., Yusa, K., Martinez, F.M., Durant, S.T., Galanty, Y., Beli, P., Adams, D.J., Bradley, A., Metzakopian, E., Forment, J.V. and Jackson, S.P. (2019). ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks. Nature Communications, [online] 10(1), pp.1–18. Available at: https://www.nature.com/articles/s41467-018-07729-2 [Accessed 27 Feb. 2020].

Budaitis, B.G., Jariwala, S., Reinemann, D.N., Schimert, K.I., Scarabelli, G., Grant, B.J., Sept, D., Lang, M.J. and Verhey, K.J. (2019). Neck linker docking is critical for Kinesin-1 force generation in cells but at a cost to motor speed and processivity. eLife, [online] 8, p.e44146. Available at: https://elifesciences.org/articles/44146 [Accessed 27 Feb. 2020].

Gerondopoulos, A., Strutt, H., Stevenson, N.L., Sobajima, T., Levine, T.P., Stephens, D.J., Strutt, D. and Barr, F.A. (2019). Planar Cell Polarity Effector Proteins Inturned and Fuzzy Form a Rab23 GEF Complex. Current Biology, [online] 29(19), pp.3323–3330.e8. Available at: https://www.sciencedirect.com/science/article/pii/S0960982219310164 [Accessed 27 Feb. 2020].

Griffin, B.D., Leung, A., Chan, M., Warner, B.M., Ranadheera, C., Tierney, K., Audet, J., Frost, K.L., Safronetz, D., Embury-Hyatt, C., Booth, S.A. and Kobasa, D. (2019). Establishment of an RNA polymerase II-driven reverse genetics system for Nipah virus strains from Malaysia and Bangladesh. Scientific Reports, [online] 9(1), pp.1–17. Available at: https://www.nature.com/articles/s41598-019-47549-y [Accessed 27 Feb. 2020].

Hensen, F., Potter, A., van Esveld, S.L., Tarrés-Solé, A., Chakraborty, A., Solà, M. and Spelbrink, J.N. (2019). Mitochondrial RNA granules are critically dependent on mtDNA replication factors Twinkle and mtSSB. Nucleic Acids Research, [online] 47(7), pp.3680–3698. Available at: https://academic.oup.com/nar/article/47/7/3680/5305266 [Accessed 27 Feb. 2020].

Kiseleva, A.A., Korobeynikov, V.A., Nikonova, A.S., Zhang, P., Makhov, P., Deneka, A.Y., Einarson, M.B., Serebriiskii, I.G., Liu, H., Peterson, J.R. and Golemis, E.A. (2019). Unexpected Activities in Regulating Ciliation Contribute to Off-target Effects of Targeted Drugs. [online] Clinical cancer research : an official journal of the American Association for Cancer Research. Available at: https://pubmed.ncbi.nlm.nih.gov/30867219-unexpected-activities-in-regulating-ciliation-contribute-to-off-target-effects-of-targeted-drugs/ [Accessed 27 Feb. 2020].

Kleinstiver, B.P., Sousa, A.A., Walton, R.T., Tak, Y.E., Hsu, J.Y., Clement, K., Welch, M.M., Horng, J.E., Malagon-Lopez, J., Scarfò, I., Maus, M.V., Pinello, L., Aryee, M.J. and Joung, J.K. (2019). Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nature Biotechnology, [online] 37(3), pp.276–282. Available at: https://www.nature.com/articles/s41587-018-0011-0 [Accessed 27 Feb. 2020].

Leske, A., Waßmann, I., Schnepel, K., Shifflett, K., Holzerland, J., Bostedt, L., Bohn, P., Mettenleiter, T.C., Briggiler, A.M., Brignone, J., Enria, D., Cordo, S.M., Hoenen, T. and Groseth, A. (2019). Assessing Cross-Reactivity of Junín Virus-Directed Neutralizing Antibodies. [online] Antiviral research. Available at: https://pubmed.ncbi.nlm.nih.gov/30668977-assessing-cross-reactivity-of-junin-virus-directed-neutralizing-antibodies/ [Accessed 27 Feb. 2020].

Lin, C.-L., Tsai, M.-L., Lin, C.-Y., Hsu, K.-W., Hsieh, W.-S., Chi, W.-M., Huang, L.-C. and Lee, C.-H. (2019). HDAC1 and HDAC2 Double Knockout Triggers Cell Apoptosis in Advanced Thyroid Cancer. International Journal of Molecular Sciences, [online] 20(2), p.454. Available at: https://www.mdpi.com/1422-0067/20/2/454 [Accessed 27 Feb. 2020].

Martin, A.S.T., Salamango, D.J., Serebrenik, A.A., Shaban, N.M., Brown, W.L. and Harris, R.S. (2019). A panel of eGFP reporters for single base editing by APOBEC-Cas9 editosome complexes. Scientific Reports, [online] 9(1), pp.1–8. Available at: https://www.nature.com/articles/s41598-018-36739-9 [Accessed 27 Feb. 2020].

Park, A.Y., Park, Y.S., So, D., Song, I.-K., Choi, J.-E., Kim, H.-J. and Lee, K.-J. (2019). Activity-Regulated Cytoskeleton-Associated Protein (Arc/Arg3.1) is Transiently Expressed after Heat Shock Stress and Suppresses Heat Shock Factor 1. Scientific Reports, 9(1). Availablew at: https://www.nature.com/articles/s41598-019-39292-1 [Accessed 27 Feb. 2020].

Saotome, K., Teng, B., Tsui, C.C. (Alex), Lee, W.-H., Tu, Y.-H., Kaplan, J.P., Sansom, M.S.P., Liman, E.R. and Ward, A.B. (2019). Structures of the otopetrin proton channels Otop1 and Otop3. Nature Structural & Molecular Biology, [online] 26(6), pp.518–525. Available at: https://www.nature.com/articles/s41594-019-0235-9 [Accessed 27 Feb. 2020].

Subramanian, A., Capalbo, A., Iyengar, N.R., Rizzo, R., Campli, A. di, Martino, R.D., Monte, M.L.O., Beccari, A.R., Yerudkar, A., Vecchio, C. del, Glielmo, L., Turacchio, G., Pirozzi, M., Kim, S.G., Henklein, P., Cancino, J., Parashuraman, S., Diviani, D., Fanelli, F., Sallese, M. and Luini, A. (2019). Auto-regulation of Secretory Flux by Sensing and Responding to the Folded Cargo Protein Load in the Endoplasmic Reticulum. Cell, [online] 176(6), pp.1461–1476.e23. Available at: https://www.cell.com/cell/pdf/S0092-8674(19)30098-4.pdf [Accessed 27 Feb. 2020].

Tan, C.W., Huan Hor, C.H., Kwek, S.S., Tee, H.K., Sam, I.C., Goh, E.L.K., Ooi, E.E., Chan, Y.F. and Wang, L.F. (2019). Cell Surface α2,3-linked Sialic Acid Facilitates Zika Virus Internalization. [online] Emerging microbes & infections. Available at: https://pubmed.ncbi.nlm.nih.gov/30898036-cell-surface-23-linked-sialic-acid-facilitates-zika-virus-internalization/ [Accessed 27 Feb. 2020].

Uematsu, A., Kido, K., Takahashi, H., Takahashi, C., Yanagihara, Y., Saeki, N., Yoshida, S., Maekawa, M., Honda, M., Kai, T., Shimizu, K., Higashiyama, S., Imai, Y., Tokunaga, F. and Sawasaki, T. (2019). The E3 ubiquitin ligase MIB2 enhances inflammation by degrading the deubiquitinating enzyme CYLD. Journal of Biological Chemistry, [online] p.jbc.RA119.010119. Available at: https://www.jbc.org/content/early/2019/07/31/jbc.RA119.010119 [Accessed 27 Feb. 2020].

Wang, C., Jiang, S., Zhang, L., Li, D., Liang, J., Narita, Y., Hou, I., Zhong, Q., Gewurz, B.E., Teng, M. and Zhao, B. (2019a). TAF family proteins and MEF2C are essential for Epstein-Barr virus MYC super-enhancer activity. Journal of Virology. [online] Available at: https://jvi.asm.org/content/early/2019/05/30/JVI.00513-19/article-info?versioned=true [Accessed 27 Feb. 2020].

Wang, C., Li, D., Zhang, L., Jiang, S., Liang, J., Narita, Y., Hou, I., Zhong, Q., Zheng, Z., Xiao, H., Gewurz, B.E., Teng, M. and Zhao, B. (2019b). RNA Sequencing Analyses of Gene Expression during Epstein-Barr Virus Infection of Primary B Lymphocytes. Journal of Virology, [online] 93(13). Available at: https://jvi.asm.org/content/93/13/e00226-19 [Accessed 27 Feb. 2020].

Wilkinson, A.W., Diep, J., Dai, S., Liu, S., Ooi, Y.S., Song, D., Li, T.-M., Horton, J.R., Zhang, X., Liu, C., Trivedi, D.V., Ruppel, K.M., Vilches-Moure, J.G., Casey, K.M., Mak, J., Cowan, T., Elias, J.E., Nagamine, C.M., Spudich, J.A., Cheng, X., Carette, J.E. and Gozani, O. (2019). SETD3 is an actin histidine methyltransferase that prevents primary dystocia. Nature, [online] 565(7739), pp.372–376. Available at: https://www.nature.com/articles/s41586-018-0821-8 [Accessed 27 Feb. 2020].