TransIT-Keratinocyte citations

Aparicio-Soto, M., Redhu, D., Sánchez-Hidalgo, M., Fernández-Bolaños, J.G., Alarcón-de-la-Lastra, C., Worm, M. and Babina, M. (2019). Olive-Oil-Derived Polyphenols Effectively Attenuate Inflammatory Responses of Human Keratinocytes by Interfering With the NF-κB Pathway. [online] Molecular nutrition & food research. Available at: https://pubmed.ncbi.nlm.nih.gov/31393642-olive-oil-derived-polyphenols-effectively-attenuate-inflammatory-responses-of-human-keratinocytes-by-interfering-with-the-nf-b-pathway/ [Accessed 5 Mar. 2020].

Product usage
Cell type: Keratinocytes (human, primary)
Nucleic acid: Plasmid DNA

Behne, M.J., Tu, C.-L., Aronchik, I., Epstein, E., Bench, G., Bikle, D.D., Pozzan, T. and Mauro, T.M. (2003). Human Keratinocyte ATP2C1 Localizes to the Golgi and Controls Golgi Ca2+ Stores. Journal of Investigative Dermatology, [online] 121(4), pp.688–694. Available at: https://www.sciencedirect.com/science/article/pii/S0022202X1530436X [Accessed 5 Mar. 2020].

Product usage
Cell type: Keratinocytes
Nucleic acid: Plasmid DNA

Crabtree, J.S., Kilbourne, E.J., Peano, B.J., Chippari, S., Kenney, T., McNally, C., Wang, W., Harris, H.A., Winneker, R.C., Nagpal, S. and Thompson, C.C. (2010). A Mouse Model of Androgenetic Alopecia. Endocrinology, [online] 151(5), pp.2373–2380. Available at: https://academic.oup.com/endo/article/151/5/2373/2456656 [Accessed 5 Mar. 2020].

Product usage
Cell type: CCD-1106-KERTr
Nucleic acid: Plasmid DNA

Jackson, B., Peyrollier, K., Pedersen, E., Basse, A., Karlsson, R., Wang, Z., Lefever, T., Ochsenbein, A.M., Schmidt, G., Aktories, K., Stanley, A., Quondamatteo, F., Ladwein, M., Rottner, K., van Hengel, J. and Brakebusch, C. (2011). RhoA is dispensable for skin development, but crucial for contraction and directed migration of keratinocytes. Molecular Biology of the Cell, 22(5), pp.593–605. Available at: https://www.molbiolcell.org/doi/full/10.1091/mbc.e09-10-0859 [Accessed 5 Mar. 2020].

Product usage
Cell type: Keratinocytes (mouse, primary)
Nucleic acid: Plasmid DNA

Lefever, T., Pedersen, E., Basse, A., Paus, R., Quondamatteo, F., Stanley, A.C., Langbein, L., Wu, X., Wehland, J., Lommel, S. and Brakebusch, C. (2010). N-WASP is a novel regulator of hair-follicle cycling that controls antiproliferative TGFβ pathways. Journal of Cell Science, [online] 123(1), pp.128–140. Available at: https://jcs.biologists.org/content/123/1/128 [Accessed 5 Mar. 2020].

Product usage
Cell type: Keratinocytes (mouse, primary)
Nucleic acid: Plasmid DNA

McKenzie, R.C., Oda, Y., Szepietowski, J.C., Behne, M.J. and Mauro, T. (2003). Defective Cyclic Guanosine Monophosphate-Gated Calcium Channels and the Pathogenesis of Psoriasis. [online] Acta dermato-venereologica. Available at: https://pubmed.ncbi.nlm.nih.gov/14690334-defective-cyclic-guanosine-monophosphate-gated-calcium-channels-and-the-pathogenesis-of-psoriasis/ [Accessed 5 Mar. 2020].

Product usage
Cell type: Keratinocytes
Nucleic acid: Plasmid DNA

Miao, Q., Hill, M.C., Chen, F., Mo, Q., Ku, A.T., Ramos, C., Sock, E., Lefebvre, V. and Nguyen, H. (2019). SOX11 and SOX4 drive the reactivation of an embryonic gene program during murine wound repair. Nature Communications, [online] 10(1), pp.1–20. Available at: https://www.nature.com/articles/s41467-019-11880-9 [Accessed 5 Mar. 2020].

Product usage
Cell type: Keratinocytes (mouse, primary)
Nucleic acid: Plasmid DNA

Möhl, C., Kirchgessner, N., Schäfer, C., Hoffmann, B. and Merkel, R. (2012). Quantitative mapping of averaged focal adhesion dynamics in migrating cells by shape normalization. Journal of Cell Science, [online] 125(1), pp.155–165. Available at: https://jcs.biologists.org/content/125/1/155 [Accessed 5 Mar. 2020].

Product usage
Cell type: NHEK
Nucleic acid: Plasmid DNA

Mukhopadhyay, S., Munshi, H.G., Kambhampati, S., Sassano, A., Platanias, L.C. and Stack, M.S. (2004). Calcium-induced Matrix Metalloproteinase 9 Gene Expression Is Differentially Regulated by ERK1/2 and p38 MAPK in Oral Keratinocytes and Oral Squamous Cell Carcinoma. Journal of Biological Chemistry, [online] 279(32), pp.33139–33146. Available at: https://www.jbc.org/content/279/32/33139.full?sid=ea7b0cfd-05e5-4603-90bf-4dca202900a1 [Accessed 5 Mar. 2020].

Product usage
Cell type: OKF/6
Nucleic acid: Plasmid DNA

Product usage
Cell type: SCC-25
Nucleic acid: Plasmid DNA

Product usage
Cell type: SCC-68
Nucleic acid: Plasmid DNA

Product usage
Cell type: pp126
Nucleic acid: Plasmid DNA

Munshi, H.G., Wu, Y.I., Mukhopadhyay, S., Ottaviano, A.J., Sassano, A., Koblinski, J.E., Platanias, L.C. and Stack, M.S. (2004). Differential Regulation of Membrane Type 1-Matrix Metalloproteinase Activity by ERK 1/2- and p38 MAPK-modulated Tissue Inhibitor of Metalloproteinases 2 Expression Controls Transforming Growth Factor-β1-induced Pericellular Collagenolysis. Journal of Biological Chemistry, [online] 279(37), pp.39042–39050. Available at: https://www.jbc.org/content/279/37/39042.long [Accessed 5 Mar. 2020].

Product usage
Cell type: SCC-25
Nucleic acid: Plasmid DNA

Murphy, K.A., Villano, C.M., Dorn, R. and White, L.A. (2004). Interaction between the Aryl Hydrocarbon Receptor and Retinoic Acid Pathways Increases Matrix Metalloproteinase-1 Expression in Keratinocytes. Journal of Biological Chemistry, [online] 279(24), pp.25284–25293. Available at: https://www.jbc.org/content/279/24/25284.full [Accessed 5 Mar. 2020].

Product usage
Cell type: Keratinocytes (human, normal)
Nucleic acid: Plasmid DNA

Paccione, R.J., Miyazaki, H., Patel, V., Waseem, A., Gutkind, J.S., Zehner, Z.E. and Yeudall, W.A. (2008). Keratin down-regulation in vimentin-positive cancer cells is reversible by vimentin RNA interference, which inhibits growth and motility. Molecular Cancer Therapeutics, [online] 7(9), pp.2894–2903. Available at: https://mct.aacrjournals.org/content/7/9/2894.article-info [Accessed 5 Mar. 2020].

Product usage
Cell type: HN12
Nucleic acid: Plasmid DNA

Pang, M., Rodríguez‐Gonzalez, M., Hernandez, M., Recinos, C.C., Seldeen, K.L. and Troen, B.R. (2019). AP‐1 and Mitf interact with NFATc1 to stimulate cathepsin K promoter activity in osteoclast precursors. Journal of Cellular Biochemistry, 120(8), pp.12382–12392. Avilable at: https://pubmed.ncbi.nlm.nih.gov/30816596-ap-1-and-mitf-interact-with-nfatc1-to-stimulate-cathepsin-k-promoter-activity-in-osteoclast-precursors/ [Accessed 5 Mar. 2020].

Product usage
Cell type: RAW 264.7
Nucleic acid: Plasmid DNA

Ray, S.S. and Swanson, H.I. (2004). Dioxin-induced Immortalization of Normal Human Keratinocytes and Silencing of p53 and p16INK4a. Journal of Biological Chemistry, [online] 279(26), pp.27187–27193. Available at: https://www.jbc.org/content/279/26/27187.short [Accessed 5 Mar. 2020].

Product usage
Cell type: Epidermal keratinoctyes (human, primary)
Nucleic acid: Plasmid DNA

Sakaguchi, M., Miyazaki, M., Sonegawa, H., Kashiwagi, M., Ohba, M., Kuroki, T., Namba, M. and Huh, N.H. (2004). PKCalpha Mediates TGFbeta-induced Growth Inhibition of Human Keratinocytes via Phosphorylation of S100C/A11. [online] The Journal of cell biology. Available at: https://pubmed.ncbi.nlm.nih.gov/15051732-pkcalpha-mediates-tgfbeta-induced-growth-inhibition-of-human-keratinocytes-via-phosphorylation-of-s100ca11/ [Accessed 5 Mar. 2020].

Product usage
Cell type: Keratinocytes (human, normal)
Nucleic acid: Plasmid DNA

Sakaguchi, M., Sonegawa, H., Nukui, T., Sakaguchi, Y., Miyazaki, M., Namba, M. and Huh, N. (2005). Bifurcated converging pathways for high Ca2+- and TGFβ-induced inhibition of growth of normal human keratinocytes. Proceedings of the National Academy of Sciences, [online] 102(39), pp.13921–13926. Available at: https://www.pnas.org/content/102/39/13921 [Accessed 5 Mar. 2020].

Product usage
Cell type: Keratinocytes
Nucleic acid: Plasmid DNA

Sumitomo, A., Siriwach, R., Thumkeo, D., Ito, K., Nakagawa, R., Tanaka, N., Tanabe, K., Watanabe, A., Kishibe, M., Ishida-Yamamoto, A., Honda, T., Kabashima, K., Aoki, J. and Narumiya, S. (2019). LPA Induces Keratinocyte Differentiation and Promotes Skin Barrier Function Through the LPAR1/LPAR5-RHO-ROCK-SRF Axis. [online] The Journal of investigative dermatology. Available at: https://pubmed.ncbi.nlm.nih.gov/30447238-lpa-induces-keratinocyte-differentiation-and-promotes-skin-barrier-function-through-the-lpar1lpar5-rho-rock-srf-axis/ [Accessed 5 Mar. 2020].

Product usage
Cell type: NHEK
Nucleic acid: Plasmid DNA

Tu, C.L., Chang, W. and Bikle, D.D. (2001). The Extracellular Calcium-Sensing Receptor Is Required for Calcium-Induced Differentiation in Human Keratinocytes. [online] The Journal of biological chemistry. Available at: https://pubmed.ncbi.nlm.nih.gov/11500521-the-extracellular-calcium-sensing-receptor-is-required-for-calcium-induced-differentiation-in-human-keratinocytes/ [Accessed 5 Mar. 2020].

Product usage
Cell type: HFF
Nucleic acid: Plasmid DNA

Vliet-Gregg, P.A., Hamilton, J.R. and Katzenellenbogen, R.A. (2013). NFX1-123 and Human Papillomavirus 16E6 Increase Notch Expression in Keratinocytes. [online] Journal of virology. Available at: https://pubmed.ncbi.nlm.nih.gov/24109236-nfx1-123-and-human-papillomavirus-16e6-increase-notch-expression-in-keratinocytes/ [Accessed 5 Mar. 2020].

Product usage
Cell type: Keratinocytes (human, primary)
Nucleic acid: Plasmid DNA

Wallace, N.A., Robinson, K. and Galloway, D.A. (2014). Beta Human Papillomavirus E6 Expression Inhibits Stabilization of p53 and Increases Tolerance of Genomic Instability. [online] Journal of virology. Available at: https://pubmed.ncbi.nlm.nih.gov/24648447-beta-human-papillomavirus-e6-expression-inhibits-stabilization-of-p53-and-increases-tolerance-of-genomic-instability/ [Accessed 5 Mar. 2020].

Product usage
Cell type: Keratinocytes (human, foreskin)
Nucleic acid: Plasmid DNA
Application: Transient transfection

Xie, Z., Chang, S., Oda, Y. and Bikle, D.D. (2006). Hairless suppresses vitamin D receptor transactivation in human keratinocytes. Endocrinology, [online] 147(1), pp.314–23. Available at: https://www.ncbi.nlm.nih.gov/pubmed/16269453?dopt=Abstract [Accessed 6 Dec. 2019].

Product usage
Cell type: Keratinocytes
Nucleic acid: Plasmid DNA

Product usage
Cell type: Keratinocytes
Nucleic acid: Plasmid DNA

Xie, Z., Singleton, P.A., Bourguignon, L.Y. and Bikle, D.D. (2005). Calcium-induced Human Keratinocyte Differentiation Requires Src- And Fyn-Mediated Phosphatidylinositol 3-kinase-dependent Activation of Phospholipase C-gamma1. [online] Molecular biology of the cell. Available at: https://pubmed.ncbi.nlm.nih.gov/15872086-calcium-induced-human-keratinocyte-differentiation-requires-src-and-fyn-mediated-phosphatidylinositol-3-kinase-dependent-activation-of-phospholipase-c-gamma1/ [Accessed 5 Mar. 2020].

Product usage
Cell type: Keratinocytes
Nucleic acid: Plasmid DNA

Yuan, Q., Yeudall, W.A., Lee, E. and Yang, H. (2019). Targeted inactivation of EPS8 using dendrimer-mediated delivery of RNA interference. International Journal of Pharmaceutics, [online] 557, pp.178–181. Available at: https://www.sciencedirect.com/science/article/pii/S0378517318309785 [Accessed 5 Mar. 2020].

Product usage
Cell type: HN12
Nucleic acid: siRNA

Yuen, K.-S., Chan, C.-P., Wong, N.-H.M., Ho, C.-H., Ho, T.-H., Lei, T., Deng, W., Tsao, S.W., Chen, H., Kok, K.-H. and Jin, D.-Y. (2015). CRISPR/Cas9-mediated genome editing of Epstein–Barr virus in human cells. Journal of General Virology, 96(3), pp.626–636. Available at: https://www.microbiologyresearch.org/content/journal/jgv/10.1099/jgv.0.000012 [Accessed 5 Mar. 2020].

Product usage
Cell type: C666-1
Nucleic acid: Plasmid DNA
Application: Gene/protein expression

Product usage
Cell type: NP460-EBV
Nucleic acid: Plasmid DNA
Application: Gene/protein expression

Yuen, K.S., Wang, Z.M., Wong, N.M., Zhang, Z.Q., Cheng, T.F., Lui, W.Y., Chan, C.P. and Jin, D.Y. (2018). Suppression of Epstein-Barr Virus DNA Load in Latently Infected Nasopharyngeal Carcinoma Cells by CRISPR/Cas9. [online] Virus research. Available at: https://pubmed.ncbi.nlm.nih.gov/28456574-suppression-of-epstein-barr-virus-dna-load-in-latently-infected-nasopharyngeal-carcinoma-cells-by-crisprcas9/ [Accessed 5 Mar. 2020].

Product usage
Cell type: C666-1
Nucleic acid: Cas9 RNP

Zheng, X. and Bollinger Bollag, W. (2003). Aquaporin 3 Colocates With Phospholipase d2 in Caveolin-Rich Membrane Microdomains and Is Downregulated Upon Keratinocyte Differentiation. [online] The Journal of investigative dermatology. Available at: https://pubmed.ncbi.nlm.nih.gov/14675200-aquaporin-3-colocates-with-phospholipase-d2-in-caveolin-rich-membrane-microdomains-and-is-downregulated-upon-keratinocyte-differentiation/ [Accessed 5 Mar. 2020].

Product usage
Cell type: HEK 293
Nucleic acid: Plasmid DNA