www.bioscience.co.uk
Sales & Support: +44 (0)1223 316 855

Feeder cells citations

Graversen, V.K. and Chavala, S.H. (2016). Induced Pluripotent Stem Cells: Generation, Characterization, and Differentiation--Methods and Protocols. Methods in Molecular Biology (Clifton, N.J.), [online] 1357, pp.395–401. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25403469 [Accessed 26 Oct. 2020].

Hayashi, Y., Matsumoto, J., Kumagai, S., Morishita, K., Xiang, L., Kobori, Y., Hori, S., Suzuki, M., Kanamori, T., Hotta, K. and Sumaru, K. (2018). Automated adherent cell elimination by a high-speed laser mediated by a light-responsive polymer. Communications Biology, [online] 1, p.218. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30534610 [Accessed 26 Oct. 2020].

Horikawa, I., Park, K.-Y., Isogaya, K., Hiyoshi, Y., Li, H., Anami, K., Robles, A.I., Mondal, A.M., Fujita, K., Serrano, M. and Harris, C.C. (2017). Δ133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell Death and Differentiation, [online] 24(6), pp.1017–1028. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28362428 [Accessed 26 Oct. 2020].

Kuroda, T., Yasuda, S. and Sato, Y. (2014). In vitro detection of residual undifferentiated cells in retinal pigment epithelial cells derived from human induced pluripotent stem cells. Methods in Molecular Biology (Clifton, N.J.), [online] 1210, pp.183–192. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25173169 [Accessed 26 Oct. 2020].

Mitzelfelt, K.A., Limphong, P., Choi, M.J., Kondrat, F.D.L., Lai, S., Kolander, K.D., Kwok, W.-M., Dai, Q., Grzybowski, M.N., Zhang, H., Taylor, G.M., Lui, Q., Thao, M.T., Hudson, J.A., Barresi, R., Bushby, K., Jungbluth, H., Wraige, E., Geurts, A.M., Benesch, J.L.P., Riedel, M., Christians, E.S., Minella, A.C. and Benjamin, I.J. (2016). The Human 343delT HSPB5 Chaperone Associated with Early-onset Skeletal Myopathy Causes Defects in Protein Solubility. The Journal of Biological Chemistry, [online] 291(29), pp.14939–14953. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27226619 [Accessed 26 Oct. 2020].

Ni, A., Wu, M.J. and Chavala, S.H. (2014). Sphere Formation Permits Oct4 Reprogramming of Ciliary Body Epithelial Cells into Induced Pluripotent Stem Cells. Stem Cells and Development, 23(24), pp.3065–3071.

Piovan, C., Amari, F., Lovat, F., Chen, Q. and Coppola, V. (2014). Generation of mouse lines conditionally over-expressing microRNA using the Rosa26-Lox-Stop-Lox system. Methods in Molecular Biology (Clifton, N.J.), [online] 1194, pp.203–224. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25064105 [Accessed 26 Oct. 2020].

Saito, H., Okita, K., Chang, A.E. and Ito, F. (2016). Adoptive Transfer of CD8+ T Cells Generated from Induced Pluripotent Stem Cells Triggers Regressions of Large Tumors Along with Immunological Memory. Cancer Research, [online] 76(12), pp.3473–3483. Available at: https://www.ncbi.nlm.nih.gov/pubmed/27197199 [Accessed 26 Oct. 2020].

Schenke, M., Schjeide, B.-M., Püschel, G.P. and Seeger, B. (2020). Analysis of Motor Neurons Differentiated from Human Induced Pluripotent Stem Cells for the Use in Cell-Based Botulinum Neurotoxin Activity Assays. Toxins, [online] 12(5). Available at: https://www.ncbi.nlm.nih.gov/pubmed/32344847 [Accessed 26 Oct. 2020].

Shiba, Y., Gomibuchi, T., Seto, T., Wada, Y., Ichimura, H., Tanaka, Y., Ogasawara, T., Okada, K., Shiba, N., Sakamoto, K., Ido, D., Shiina, T., Ohkura, M., Nakai, J., Uno, N., Kazuki, Y., Oshimura, M., Minami, I. and Ikeda, U. (2016). Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature, 538(7625), pp.388–391.

Takenaka-Ninagawa, N., Kawabata, Y., Watanabe, S., Nagata, K. and Torihashi, S. (2014). Generation of rat-induced pluripotent stem cells from a new model of metabolic syndrome. PloS One, [online] 9(8), p.e104462. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25111735 [Accessed 26 Oct. 2020].

Uto, S., Hikita, A., Sakamoto, T., Mori, D., Yano, F., Ohba, S., Saito, T., Takato, T. and Hoshi, K. (2020). Ear Cartilage Reconstruction Combining iPS Cell-Derived Cartilage and 3D Shape Memory Scaffold. Tissue Engineering. Part A. [online] Available at: https://pubmed.ncbi.nlm.nih.gov/32883178/ [Accessed 26 Oct. 2020].

Wu, D.-T. and Roth, M.J. (2014). MLV based viral-like-particles for delivery of toxic proteins and nuclear transcription factors. Biomaterials, [online] 35(29), pp.8416–8426. Available at: https://www.ncbi.nlm.nih.gov/pubmed/24997480 [Accessed 26 Oct. 2020].

Yi, L., Lu, C., Hu, W., Sun, Y. and Levine, A.J. (2012). Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation. Cancer Research, [online] 72(21), pp.5635–5645. Available at: https://pubmed.ncbi.nlm.nih.gov/22964580/ [Accessed 26 Oct. 2020].