Sales & Support: +44 (0)1223 316 855

ExoCET citations

Chen, C.-Y., Rao, S.-S., Tan, Y.-J., Luo, M.-J., Hu, X.-K., Yin, H., Huang, J., Hu, Y., Luo, Z.-W., Liu, Z.-Z., Wang, Z.-X., Cao, J., Liu, Y.-W., Li, H.-M., Chen, Y., Du, W., Liu, J.-H., Zhang, Y., Chen, T.-H., Liu, H.-M., Wu, B., Yue, T., Wang, Y.-Y., Xia, K., Lei, P.-F., Tang, S.-Y. and Xie, H. (2019). Extracellular vesicles from human urine-derived stem cells prevent osteoporosis by transferring CTHRC1 and OPG. Bone Research, [online] 7(1), pp.1–14. Available at: https://www.nature.com/articles/s41413-019-0056-9 [Accessed 25 Feb. 2020].

Cornell, L., Wander, S.A., Visal, T., Wagle, N. and Shapiro, G.I. (2019). MicroRNA-Mediated Suppression of the TGF-β Pathway Confers Transmissible and Reversible CDK4/6 Inhibitor Resistance. [online] Cell reports. Available at: https://pubmed.ncbi.nlm.nih.gov/30840889-microrna-mediated-suppression-of-the-tgf-pathway-confers-transmissible-and-reversible-cdk46-inhibitor-resistance/ [Accessed 25 Feb. 2020].

Domenis, R., Cifù, A., Marinò, D., Fabris, M., Niazi, K.R., Soon-Shiong, P. and Curcio, F. (2019). Toll-like Receptor-4 Activation Boosts the Immunosuppressive Properties of Tumor Cells-derived Exosomes. Scientific Reports, [online] 9(1), pp.1–14. Available at: https://www.nature.com/articles/s41598-019-44949-y [Accessed 25 Feb. 2020].

Domenis, R., Zanutel, R., Caponnetto, F., Toffoletto, B., Cifù, A., Pistis, C., Di Benedetto, P., Causero, A., Pozzi, M., Bassini, F., Fabris, M., Niazi, K.R., Soon-Shiong, P. and Curcio, F. (2017). Characterization of the Proinflammatory Profile of Synovial Fluid-Derived Exosomes of Patients With Osteoarthritis. [online] Mediators of inflammation. Available at: https://pubmed.ncbi.nlm.nih.gov/28634420-characterization-of-the-proinflammatory-profile-of-synovial-fluid-derived-exosomes-of-patients-with-osteoarthritis/ [Accessed 25 Feb. 2020].

Guay, C., Kruit, J.K., Rome, S., Menoud, V., Mulder, N.L., Jurdzinski, A., Mancarella, F., Sebastiani, G., Donda, A., Gonzalez, B.J., Jandus, C., Bouzakri, K., Pinget, M., Boitard, C., Romero, P., Dotta, F. and Regazzi, R. (2019). Lymphocyte-Derived Exosomal MicroRNAs Promote Pancreatic β Cell Death and May Contribute to Type 1 Diabetes Development. Cell Metabolism, [online] 29(2), pp.348–361.e6. Available at: https://www.cell.com/cell-metabolism/fulltext/S1550-4131(18)30576-X [Accessed 25 Feb. 2020].

Hurwitz, S.N., Nkosi, D., Conlon, M.M., York, S.B., Liu, X., Tremblay, D.C. and Meckes, D.G. (2017). CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-κB Signaling. Journal of Virology, [online] 91(5). Available at: https://jvi.asm.org/content/91/5/e02251-16 [Accessed 25 Feb. 2020].

Jiang, X., Sucharov, J., Stauffer, B.I., Miyamoto, S.D. and Sucharov, C.C. (2017). Exosomes From Pediatric Dilated Cardiomyopathy Patients Modulate a Pathological Response in Cardiomyocytes. [online] American journal of physiology. Heart and circulatory physiology. Available at: https://pubmed.ncbi.nlm.nih.gov/28130338-exosomes-from-pediatric-dilated-cardiomyopathy-patients-modulate-a-pathological-response-in-cardiomyocytes/ [Accessed 25 Feb. 2020].

Kalimuthu, K., Kwon, W.Y. and Park, K.S. (2019). A simple approach for rapid and cost-effective quantification of extracellular vesicles using a fluorescence polarization technique. Journal of Biological Engineering, 13(1). Available at: https://jbioleng.biomedcentral.com/articles/10.1186/s13036-019-0160-9 [Accessed 25 Feb. 2020].

Lee, J.Y., Park, J.K., Lee, E.Y., Lee, E.B. and Song, Y.W. (2016). Circulating exosomes from patients with systemic lupus erythematosus induce a proinflammatory immune response. Arthritis Research & Therapy, 18(1). Avialable at: https://arthritis-research.biomedcentral.com/articles/10.1186/s13075-016-1159-y. [Accessed 25 Feb. 2020].

Matsumoto, Y., Kano, M., Akutsu, Y., Hanari, N., Hoshino, I., Murakami, K., Usui, A., Suito, H., Takahashi, M., Otsuka, R., Xin, H., Komatsu, A., Iida, K. and Matsubara, H. (2016). Quantification of Plasma Exosome Is a Potential Prognostic Marker for Esophageal Squamous Cell Carcinoma. [online] Oncology reports. Available at: https://pubmed.ncbi.nlm.nih.gov/27599779-quantification-of-plasma-exosome-is-a-potential-prognostic-marker-for-esophageal-squamous-cell-carcinoma/ [Accessed 25 Feb. 2020].

Rody, W.J., Krokhin, O., Spicer, V., Chamberlain, C.A., Chamberlain, M., McHugh, K.P., Wallet, S.M., Emory, A.K., Crull, J.D. and Holliday, L.S. (2017). The Use of Cell Culture Platforms to Identify Novel Markers of Bone and Dentin Resorption. [online] Orthodontics & craniofacial research. Available at: https://pubmed.ncbi.nlm.nih.gov/28643914-the-use-of-cell-culture-platforms-to-identify-novel-markers-of-bone-and-dentin-resorption/ [Accessed 25 Feb. 2020].

Rossaint, J., Kühne, K., Skupski, J., Van Aken, H., Looney, M.R., Hidalgo, A. and Zarbock, A. (2016). Directed Transport of Neutrophil-Derived Extracellular Vesicles Enables Platelet-Mediated Innate Immune Response. [online] Nature communications. Available at: https://pubmed.ncbi.nlm.nih.gov/27845343-directed-transport-of-neutrophil-derived-extracellular-vesicles-enables-platelet-mediated-innate-immune-response/ [Accessed 25 Feb. 2020].

Sharma, R., Huang, X., Brekken, R.A. and Schroit, A.J. (2017). Detection of Phosphatidylserine-Positive Exosomes for the Diagnosis of Early-Stage Malignancies. [online] British journal of cancer. Available at: https://pubmed.ncbi.nlm.nih.gov/28641308-detection-of-phosphatidylserine-positive-exosomes-for-the-diagnosis-of-early-stage-malignancies/ [Accessed 25 Feb. 2020].

Slowey, P.D. (2016). Salivary Diagnostics Using Purified Nucleic Acids. Methods in Molecular Biology, 1537, pp.3–15.Available at: https://link.springer.com/protocol/10.1007/978-1-4939-6685-1_1 [Accessed 25 Feb. 2020].

T. Hovsepian, Gaëlle Saint-Auret and C. Lebot (2017). A Skin Extracellular Signaling Pathway via Intercellular Exosomes Highlighted by Genetic and Epigenetic Analysis Applied to a Natural Ingredient. [online] Available at: https://www.semanticscholar.org/paper/A-Skin-Extracellular-Signaling-Pathway-via-Exosomes-Hovsepian-Saint-Auret/1a0f4dc72596951c0a97ae174f56686ec1209205 [Accessed 25 Feb. 2020].

Thomou, T., Mori, M.A., Dreyfuss, J.M., Konishi, M., Sakaguchi, M., Wolfrum, C., Rao, T.N., Winnay, J.N., Garcia-Martin, R., Grinspoon, S.K., Gorden, P. and Kahn, C.R. (2017). Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature, 542(7642), pp.450–455. Available at: https://www.nature.com/articles/nature21365 [Accessed 25 Feb. 2020].

Val, S., Jeong, S., Poley, M., Krueger, A., Nino, G., Brown, K. and Preciado, D. (2017). Purification and characterization of microRNAs within middle ear fluid exosomes: implication in otitis media pathophysiology. Pediatric Research, [online] 81(6), pp.911–918. Available at: https://www.nature.com/articles/pr201725

Wu, X.-M., Gao, Y.-B., Xu, L.-P., Zou, D.-W., Zhu, Z.-Y., Wang, X.-L., Yao, W.-J., Luo, L.-T., Tong, Y., Tian, N.-X., Han, Z.-J. and Dang, W.-Y. (2017). Tongxinluo Inhibits Renal Fibrosis in Diabetic Nephropathy: Involvement of the Suppression of Intercellular Transfer of TGF-β1-Containing Exosomes from GECs to GMCs. The American Journal of Chinese Medicine, 45(05), pp.1075–1092. Available at: https://www.worldscientific.com/doi/10.1142/S0192415X17500586 [Accessed 25 Feb. 2020].

Yang, R., Yu, T., Kou, X., Gao, X., Chen, C., Liu, D., Zhou, Y. and Shi, S. (2018). Tet1 and Tet2 maintain mesenchymal stem cell homeostasis via demethylation of the P2rX7 promoter. Nature Communications, [online] 9(1), pp.1–14. Available at: https://www.nature.com/articles/s41467-018-04464-6 [Accessed 25 Feb. 2020].