www.bioscience.co.uk
Sales & Support: +44 (0)1223 316 855

ExoAbs citations

Capello, M., Vykoukal, J.V., Katayama, H., Bantis, L.E., Wang, H., Kundnani, D.I., Aguilar-Bonavides, C., Aguilar, M., Tripathi, S.C., Dhillon, D.S., Momin, A.A., Peters, H., Katz, M.H., Alvarez, H., Bernard, V., Ferri-Borgogno, S., Brand, R., Adler, D.G., Firpo, M.A., Mulvihill, S.J., Molldrem, J.J., Feng, Z., Taguchi, A., Maitra, A. and Hanash, S.M. (2019). Exosomes Harbor B Cell Targets in Pancreatic Adenocarcinoma and Exert Decoy Function Against Complement-Mediated Cytotoxicity. [online] Nature communications. Available at: https://pubmed.ncbi.nlm.nih.gov/30651550-exosomes-harbor-b-cell-targets-in-pancreatic-adenocarcinoma-and-exert-decoy-function-against-complement-mediated-cytotoxicity/ [Accessed 26 Feb. 2020].

Dickman, C.T., Lawson, J., Jabalee, J., MacLellan, S.A., LePard, N.E., Bennewith, K.I. and Garnis, C. (2017). Selective Extracellular Vesicle Exclusion of miR-142-3p by Oral Cancer Cells Promotes Both Internal and Extracellular Malignant Phenotypes. [online] Oncotarget. Available at: https://pubmed.ncbi.nlm.nih.gov/28146434-selective-extracellular-vesicle-exclusion-of-mir-142-3p-by-oral-cancer-cells-promotes-both-internal-and-extracellular-malignant-phenotypes/ [Accessed 26 Feb. 2020].

Fischer, S., Cornils, K., Speiseder, T., Badbaran, A., Reimer, R., Indenbirken, D., Grundhoff, A., Brunswig-Spickenheier, B., Alawi, M. and Lange, C. (2016). Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles. [online] PloS one. Available at: https://pubmed.ncbi.nlm.nih.gov/27684368-indication-of-horizontal-dna-gene-transfer-by-extracellular-vesicles/ [Accessed 26 Feb. 2020].

Freitas, D., Balmaña, M., Poças, J., Campos, D., Osório, H., Konstantinidi, A., Vakhrushev, S.Y., Magalhães, A. and Reis, C.A. (2019). Different Isolation Approaches Lead to Diverse Glycosylated Extracellular Vesicle Populations. [online] Journal of extracellular vesicles. Available at: https://pubmed.ncbi.nlm.nih.gov/31236201-different-isolation-approaches-lead-to-diverse-glycosylated-extracellular-vesicle-populations/ [Accessed 26 Feb. 2020].

Guo, D.F., Lin, Z., Wu, Y., Searby, C., Thedens, D.R., Richerson, G.B., Usachev, Y.M., Grobe, J.L., Sheffield, V.C. and Rahmouni, K. (2019). The BBSome in POMC and AgRP Neurons Is Necessary for Body Weight Regulation and Sorting of Metabolic Receptors. [online] Diabetes. Available at: https://pubmed.ncbi.nlm.nih.gov/31127052-the-bbsome-in-pomc-and-agrp-neurons-is-necessary-for-body-weight-regulation-and-sorting-of-metabolic-receptors/ [Accessed 26 Feb. 2020].

Hao, Y.X., Li, Y.M., Ye, M., Guo, Y.Y., Li, Q.W., Peng, X.M., Wang, Q., Zhang, S.F., Zhao, H.X., Zhang, H., Li, G.H., Zhu, J.H. and Xiao, W.H. (2017). KRAS and BRAF Mutations in Serum Exosomes From Patients With Colorectal Cancer in a Chinese Population. [online] Oncology letters. Available at: https://pubmed.ncbi.nlm.nih.gov/28521461-kras-and-braf-mutations-in-serum-exosomes-from-patients-with-colorectal-cancer-in-a-chinese-population/ [Accessed 26 Feb. 2020].

Hsu, Y., Hung, J.Y., Chang, W.A., Lin, Y.S., Pan, Y.C., Tsai, P.H., Wu, C.Y. and Kuo, P.I. (2017). Hypoxic Lung Cancer-Secreted Exosomal miR-23a Increased Angiogenesis and Vascular Permeability by Targeting Prolyl Hydroxylase and Tight Junction Protein ZO-1. [online] Oncogene. Available at: https://pubmed.ncbi.nlm.nih.gov/28436951-hypoxic-lung-cancer-secreted-exosomal-mir-23a-increased-angiogenesis-and-vascular-permeability-by-targeting-prolyl-hydroxylase-and-tight-junction-protein-zo-1/ [Accessed 26 Feb. 2020].

Joy, M., Gau, D., Castellucci, N., Prywes, R. and Roy, P. (2017). The Myocardin-Related Transcription Factor MKL Co-Regulates the Cellular Levels of Two Profilin Isoforms. [online] The Journal of biological chemistry. Available at: https://pubmed.ncbi.nlm.nih.gov/28546428-the-myocardin-related-transcription-factor-mkl-co-regulates-the-cellular-levels-of-two-profilin-isoforms/ [Accessed 26 Feb. 2020].

Kim, J.H., Lee, C. and Lee, S.W. (2019). Exosomal Transmission of MicroRNA From HCV Replicating Cells Stimulates Transdifferentiation in Hepatic Stellate Cells. [online] Molecular therapy. Nucleic acids. Available at: https://pubmed.ncbi.nlm.nih.gov/30753992-exosomal-transmission-of-microrna-from-hcv-replicating-cells-stimulates-transdifferentiation-in-hepatic-stellate-cells/.[Accessed 26 Feb. 2020]

Koh, Y.Q., Peiris, H.N., Vaswani, K., Reed, S., Rice, G.E., Salomon, C. and Mitchell, M.D. (2016). Characterization of Exosomal Release in Bovine Endometrial Intercaruncular Stromal Cells. [online] Reproductive biology and endocrinology : RB&E. Available at: https://pubmed.ncbi.nlm.nih.gov/27829441-characterization-of-exosomal-release-in-bovine-endometrial-intercaruncular-stromal-cells/ [Accessed 26 Feb. 2020].

Loyer, X., Zlatanova, I., Devue, C., Yin, M., Howangyin, K.Y., Klaihmon, P., Guerin, C.L., Kheloufi, M., Vilar, J., Zannis, K., Fleischmann, B.K., Hwang, D.W., Park, J., Lee, H., Menasché, P., Silvestre, J.S. and Boulanger, C.M. (2018). Intra-Cardiac Release of Extracellular Vesicles Shapes Inflammation Following Myocardial Infarction. [online] Circulation research. Available at: https://pubmed.ncbi.nlm.nih.gov/29592957-intra-cardiac-release-of-extracellular-vesicles-shapes-inflammation-following-myocardial-infarction/ [Accessed 26 Feb. 2020].

Maurel, M., Obacz, J., Avril, T., Ding, Y.P., Papadodima, O., Treton, X., Daniel, F., Pilalis, E., Hörberg, J., Hou, W., Beauchamp, M.C., Tourneur-Marsille, J., Cazals-Hatem, D., Sommerova, L., Samali, A., Tavernier, J., Hrstka, R., Dupont, A., Fessart, D., Delom, F., Fernandez-Zapico, M.E., Jansen, G., Eriksson, L.A., Thomas, D.Y., Jerome-Majewska, L., Hupp, T., Chatziioannou, A., Chevet, E. and Ogier-Denis, E. (2019). Control of Anterior GRadient 2 (AGR2) Dimerization Links Endoplasmic Reticulum Proteostasis to Inflammation. [online] EMBO molecular medicine. Available at: https://pubmed.ncbi.nlm.nih.gov/31040128-control-of-anterior-gradient-2-agr2-dimerization-links-endoplasmic-reticulum-proteostasis-to-inflammation/ [Accessed 26 Feb. 2020].

Parry, H.A., Mobley, C.B., Mumford, P.W., Romero, M.A., Haun, C.T., Zhang, Y., Roberson, P.A., Zempleni, J., Ferrando, A.A., Vechetti, I.J., McCarthy, J.L., Young, K.C., Roberts, M.D. and Kavazis, A.N. (2019). Bovine Milk Extracellular Vesicles (EVs) Modification Elicits Skeletal Muscle Growth in Rats. [online] Frontiers in physiology. Available at: https://pubmed.ncbi.nlm.nih.gov/31040795-bovine-milk-extracellular-vesicles-evs-modification-elicits-skeletal-muscle-growth-in-rats/ [Accessed 26 Feb. 2020].

Perut, F., Roncuzzi, L., Zini, N., Massa, A. and Baldini, N. (2019). Extracellular Nanovesicles Secreted by Human Osteosarcoma Cells Promote Angiogenesis. [online] Cancers. Available at: https://pubmed.ncbi.nlm.nih.gov/31195680-extracellular-nanovesicles-secreted-by-human-osteosarcoma-cells-promote-angiogenesis/. [Accessed on 26 Feb. 2020-.

Reiter, K., Aguilar, P.P., Wetter, V., Steppert, P., Tover, A. and Jungbauer, A. (2019). Separation of Virus-Like Particles and Extracellular Vesicles by Flow-Through and Heparin Affinity Chromatography. [online] Journal of chromatography. A. Available at: https://pubmed.ncbi.nlm.nih.gov/30616980-separation-of-virus-like-particles-and-extracellular-vesicles-by-flow-through-and-heparin-affinity-chromatography/ [Accessed 26 Feb. 2020].

Sung, P.S., Huang, T.F. and Hsieh, S.I. (2019). Extracellular Vesicles From CLEC2-activated Platelets Enhance Dengue Virus-Induced Lethality via CLEC5A/TLR2. [online] Nature communications. Available at: https://pubmed.ncbi.nlm.nih.gov/31160588-extracellular-vesicles-from-clec2-activated-platelets-enhance-dengue-virus-induced-lethality-via-clec5atlr2/ [Accessed 26 Feb. 2020].

Wen, S., Dooner, M., Cheng, Y., Papa, E., Del Tatto, M., Pereira, M., Deng, Y., Goldberg, L., Aliotta, J., Chatterjee, D., Stewart, C., Carpanetto, A., Collino, F., Bruno, S., Camussi, G. and Quesenberry, P. (2016). Mesenchymal Stromal Cell-Derived Extracellular Vesicles Rescue Radiation Damage to Murine Marrow Hematopoietic Cells. [online] Leukemia. Available at: https://pubmed.ncbi.nlm.nih.gov/27150009-mesenchymal-stromal-cell-derived-extracellular-vesicles-rescue-radiation-damage-to-murine-marrow-hematopoietic-cells/ [Accessed 26 Feb. 2020].

Yoon, S., Kovalenko, A., Bogdanov, K. and Wallach, D. (2017). MLKL, the Protein That Mediates Necroptosis, Also Regulates Endosomal Trafficking and Extracellular Vesicle Generation. [online] Immunity. Available at: https://pubmed.ncbi.nlm.nih.gov/28666573-mlkl-the-protein-that-mediates-necroptosis-also-regulates-endosomal-trafficking-and-extracellular-vesicle-generation/ [Accessed 26 Feb. 2020].

Zlotogorski-Hurvitz, A., Dekel, B.Z., Malonek, D., Yahalom, R. and Vered, M. (2019). FTIR-based Spectrum of Salivary Exosomes Coupled With Computational-Aided Discriminating Analysis in the Diagnosis of Oral Cancer. [online] Journal of cancer research and clinical oncology. Available at: https://pubmed.ncbi.nlm.nih.gov/30603907-ftir-based-spectrum-of-salivary-exosomes-coupled-with-computational-aided-discriminating-analysis-in-the-diagnosis-of-oral-cancer/.[Accessed 26 Feb. 2020].