

Instructions for Use

NativeCoat[™] ECM Surface Coating Kit

Storage temperature -20°C

For research use only. Not for human or animal therapeutic or diagnostic use.

Contents and Storage

The components of the NativeCoat[™] ECM Surface Coating Kit are shipped on ice. Upon receipt, store all components at -20°C. Avoid freeze/thaw cycles. Kit components are listed in the table below.

Component	Quantity
NativeCoat™ ECM Surface Coating	1 mL × 1
10× Buffer	1 mL × 2

Materials (required but not provided)

- water (sterile cell culture grade, for diluting 10× Buffer component)
- 1× phosphate-buffered saline (PBS)
- tubes (for mixing components)
- multi-well plate or other cell culture surface
- micropipettes & tips

Revision: 12 December 2018

Preparation of NativeCoat[™] ECM Surface Coating for Cell Culture

Important: Prior to proceeding with NativeCoatTM ECM Surface Coating, please review Instructions for Use and see Appendix A, sections A1 – A5 for instructions and example to calculate reagent volumes.

- 1. Calculate the volumes of all reagents and dilutions according to the desired NativeCoat[™] ECM Surface Coating component concentration using the instructions and example provided in Appendix A.
- 2. Thaw all components to room temperature. Note: Avoid multiple freeze/thaw cycles.
- 3. Add volume of 10× Buffer component (calculated in A4) to volume of sterile cell culture grade water (calculated in A5) to obtain Working Buffer. Mix thoroughly by pipetting up and down. Avoid introducing bubbles.
- 4. Add volume of NativeCoat[™] ECM Surface Coating component (calculated in A3) to Working Buffer to obtain NativeCoat[™] ECM Surface Coating. Mix thoroughly by pipetting up and down. Avoid introducing bubbles.
- 5. Add NativeCoat™ ECM Surface Coating to the cell culture substrate (e.g., multi-well plate, petri dish) according to your experimental setup. Refer to Appendix B for suggested coating volumes for multi-well formats.
- 6. Gently tap, swirl, or shake multi-well plate or dish for 30 seconds to ensure even coating of cell culture surfaces with NativeCoat™ ECM Surface Coating.
- 7. Incubate NativeCoatTM ECM Surface Coating at 37°C in a humidified environment for 1 2 hours.
- 8. Aspirate NativeCoat™ ECM Surface Coating. Important: Do not allow coated surfaces to dry.
- 9. Wash cell culture surfaces with 1× phosphate-buffered saline. Aspirate 1× PBS.
- 10. Add cell suspension to cell culture surfaces coated with NativeCoat™ ECM Surface Coating.
- 11. Culture cells according to standard cell culture protocols.

For technical support, please visit xylyxbio.com or email info@xylyxbio.com.

References

O'Neill et al. The regulation of growth and metabolism of kidney stem cells with regional specificity using extracellular matrix derived from kidney. Biomaterials. 2013.

Appendix A

Instructions and example for calculating reagent volumes to prepare NativeCoat™ ECM Surface Coating. **Note**: The NativeCoat™ ECM Surface Coating component is provided at a concentration of 1 mg/mL.

Instructions	Example
A1. Determine the desired concentration of NativeCoat™ ECM Surface Coating.	200 μg/mL
A2. Determine the required volume of NativeCoat ™ ECM Surface Coating (V_S) .	$V_S = 4 \text{ mL}$
A3. Calculate the required volume of NativeCoat™ ECM Surface Coating component (V _{NC}).	$V_{NC} = \frac{V_S}{5} = \frac{4 \text{ mL}}{5} = 0.8 \text{ mL}$
A4. Calculate the required volume of 10× Buffer component (V _B).	$V_{\rm B} = \frac{V_{\rm S}}{10} = \frac{4 \text{ mL}}{10} = 0.4 \text{ mL}$
A5. Calculate the required volume of sterile cell culture grade water (V _{H2O}).	$V_{H2O} = V_S - V_{NC} - V_B$ $V_{H2O} = 4 \text{ mL} - 0.8 \text{mL} - 0.4 \text{mL}$ $V_{H2O} = 2.8 \text{mL}$

Appendix B

 Aulti-well plate	Volume
6	1000 – 1500 μL
12	500 – 700 μL
24	300 – 350 μL
48	100 – 150 μL
96	30- 50 μL