

PROTOCOL
swiftbiosci.com

ACCEL-NGS® METHYL-SEQ DNA LIBRARY KIT

Single, Dual Combinatorial and Unique Dual Indexing

Protocol for Cat. Nos. 30024 and 30096
to be used with:

- Methyl-Seq Set A Indexing Kit (Cat. No. 36024)
- Methyl-Seq Dual Combinatorial Indexing Kit (Cat. No. 38096)
- Methyl-Seq Unique Dual Indexing Kit (24 indices, 96 rxns - Cat. No. 39096)
- Methyl-Seq Unique Dual Indexing Kit (96 indices, 384 rxns - Cat. No. 390384)

Visit swiftbiosci.com/protocols for updates.

Table of Contents

About This Guide	1
Product Information	1
Applications	2
Accel-NGS Methyl-Seq DNA Library Kit Workflow	2
Kit Contents	3
Material and Equipment Not Included	4
Storage and Usage Warning	4
Tips and Techniques	5
Size Selection During Clean-Up Steps	5
Recommended PCR Cycles	5
Input Material Considerations	5
Prepare the DNA Sample	7
Input DNA Quantification	7
DNA Fragmentation	7
Optional Concentration Step	8
Bisulfite Conversion	8
Prepare the Reagent Master Mixes and Ethanol	9
BEGIN YOUR ACCEL-NGS METHYL-SEQ PROTOCOL	
Prepare the DNA Libraries	10
Denaturation	10
● Adaptase	10
● Extension	11
● Ligation	11
● Indexing PCR	12
Sequence the DNA Libraries	13
Expected Results	14
Library Quantification	14
Instrument Compatibility	14
Appendix	15
Section A: NimbleGen SeqCap Epi Hybridization Capture	15
Section B: Small Fragment (\geq 40 bp) Retention	17
Section C: Size Selection/Clean-up Protocol	18
Section D: Indexing Kits (Cat. No. 36024, 38096, 39096, and 390384)	19
Section E: Data Analysis and Informatics	22
Section F: Helpful Information and Troubleshooting	23
General Warranty	24
Limitation of Liability	24
Notice to Purchaser: Limited License	24

About This Guide

This guide provides instructions for the preparation of high complexity NGS libraries from bisulfite-converted DNA using an [Accel-NGS Methyl-Seq DNA Library Kit](#). This kit is suitable for NGS library prep with Single, Dual Combinatorial or Unique Dual Indexing.

! IMPORTANT!

Read the entire Protocol before use, especially the sections pertaining to Product Information, Kit Contents, Material and Equipment Not Included, and Input Material Considerations.

Product Information

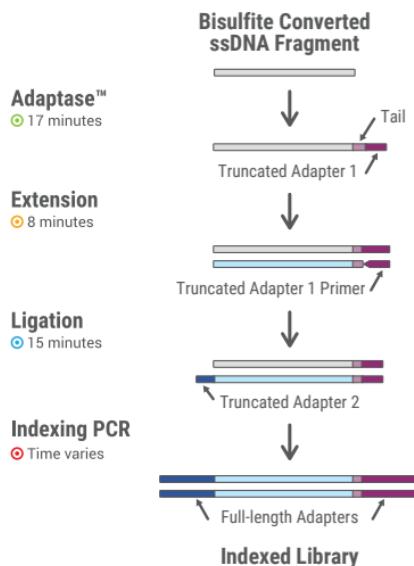
The Accel-NGS Methyl-Seq DNA Library Kit enables the preparation of high complexity next-generation sequencing (NGS) libraries from bisulfite-converted DNA for sequencing on Illumina® platforms. The Methyl-Seq technology utilizes Illumina-compatible adapter sequences and has been validated for whole genome bisulfite sequencing (WGBS) and targeted sequencing (such as hybridization capture enrichment using NimbleGen™ SeqCap™ Epi Enrichment Systems) with genomic DNA, including formalin-fixed, paraffin-embedded (FFPE) samples, and cell-free DNA samples.

Libraries can be made from as little as 100 pg of high quality DNA starting input DNA. The technology powering the Accel-NGS Methyl-Seq Kit is compatible with single-stranded DNA (ssDNA), making it an ideal choice for NGS library prep from DNA fragments damaged and denatured by bisulfite conversion. By using single-stranded, bisulfite-converted DNA molecules as input, the Accel-NGS Methyl-Seq Kit overcomes the significant library loss associated with alternative library preparations that require double-stranded input DNA and bisulfite conversion of completed library molecules. This empowers users of the Accel-NGS Methyl-Seq DNA Library Kit to use fewer PCR cycles from the same input, and further enables the use of inputs that were formerly prohibitively low.

Applications

The Accel-NGS Methyl-Seq DNA Library Kit is suitable for the following applications:

- WGBS
- Reduced Representation Bisulfite Sequencing (RRBS)*
- Hybridization capture using NimbleGen SeqCap Epi Enrichment Systems††
- Bisulfite-converted DNA enriched by ChIP or other methods*
- Sequencing ancient DNA samples when retention of fragments containing uracil nucleotides as a result of damage is desired**


*Enrichment methods generally require higher input quantities.

† NimbleGen SeqCap Epi hybridization requires the use of single indexing (Swift Cat. No. 36024) for compatibility. Additionally, please use the amplification polymerase provided in the SeqCap Epi Accessory Kit (Roche NimbleGen Cat. No. 07145519001/07185707001) for Pre-Hybridization LM-PCR during the Indexing PCR Step of this protocol. Swift's Accel-NGS Methyl-Seq Kit can support inputs lower than those supported by the recommended NimbleGen library preparation. Please email TechSupport@swiftbiosci.com for more information on validated input quantities and recommended number of PCR cycles. See Appendix, Section A for protocol modifications specific to libraries for NimbleGen SeqCap Epi hybridization.

‡ The Accel-NGS Methyl-Seq Kit cannot be used with hybridization capture technologies that utilize probes which are incompatible with bisulfite-converted DNA (e.g. Agilent SureSelect^{XT} Human Methyl-Seq). Please email TechSupport@swiftbiosci.com for more information and recommendations.

** For samples containing small DNA fragments, like ancient DNA samples, modified bead ratios can be used to retain fragments as small as 40 bases (see Appendix, Section B).

Accel-NGS Methyl-Seq DNA Library Kit Workflow

This protocol sequentially attaches adapters to single-stranded DNA fragments.

The Adaptase step is a highly efficient, template-independent reaction that simultaneously performs tailing and ligation of truncated adapter 1 to 3' ends.

The Extension step is used to incorporate truncated adapter 1' by a primer extension reaction.

The Ligation step is used to add truncated adapter 2 to the bottom strand only.

The Indexing PCR step increases yield and incorporates full length adapters for single or dual indexing.

Bead-based clean-ups are used to remove both oligonucleotides and small fragments, as well as to change enzymatic buffer composition.

Kit Contents

The Accel-NGS Methyl-Seq DNA Library Kit is available in two sizes with reagents (10% excess volume) for the preparation of either 24 or 96 libraries. Index X (Single Indexing primer mixture), D50X/D7XX (Combinatorial Dual Index primers), or U001-U096 (Unique Dual Index primers), are provided separately in one of the available Accel-NGS Methyl-Seq Indexing Kits (see Appendix, Section D).

Reagents	Quantity (μl)	Storage (°C)	
	24 rxn	96 rxn	
Buffer G1	106	423	-20
Reagent G2	106	423	-20
Reagent G3	66	264	-20
Enzyme G4	27	106	-20
Enzyme G5	27	106	-20
Enzyme G6	27	106	-20
Reagent Y1	53	212	-20
Enzyme Y2	1109	4436	-20
Buffer B1	80	317	-20
Reagent B2	264	1056	-20
Enzyme B3	53	212	-20
Buffer R1	264	1056	-20
Reagent R2	106	423	-20
Enzyme R3	27	106	-20

! IMPORTANT!
Place the enzymes on ice, NOT in a cryocooler, for at least 10 minutes to allow enzymes to reach 4 °C prior to pipetting.

Reagents	Quantity (mL)	Storage (°C)
Low EDTA TE	20	RT

Indexing Reagents Provided Separately

Reagents	Volume per rxn (μl)	Quantity per tube (μl)			Storage (°C)
		24 rxn	96 rxn	384 rxn	
Single Index X	5	11	—	—	-20
Combinatorial Dual Index (D50X/D7XX)	2.5 + 2.5	—	33/22	—	-20
Unique Dual Index (U001-U024)	5	—	22	—	-20
Unique Dual Index (U001-U096)	5	—	—	22	-20

Material and Equipment Not Included

- A compatible Accel-NGS Methyl-Seq Indexing Kit (Reagents Index X, Index D50X/D7XX, or Index U001-U096)
- Bisulfite conversion kit which does not include a nucleic acid carrier, e.g. Zymo Research EZ DNA Methylation-Gold Kit™
- Unmethylated Lambda DNA (Promega Cat. No. D1521)
- PhiX or other high complexity library for loading purposes
- Magnetic beads for clean-up steps, e.g., SPRIselect™ beads (Beckman Coulter, Cat. No. B23317/B23318/B23319)
- Magnetic rack for clean-up steps, e.g., Invitrogen DynaMag™ or Agencourt® SPRIPlate™
- Library quantification kit
- Qubit® or other fluorometric-based assays for determining double-stranded DNA (dsDNA) concentration
- NanoDrop® or other device for determining ssDNA concentration
- Method for fragmentation of input DNA by mechanical or enzymatic shearing
- Microfuge
- Programmable thermocycler
- 0.2 mL PCR tubes
- 1.5 mL low retention microfuge tubes
- Aerosol-resistant, low retention pipettes and tips, 2 to 1000 μ L
- 200-proof/absolute ethanol (molecular biology-grade)
- Nuclease-free water (molecular biology-grade)

Storage and Usage Warning

Upon receipt, store the Accel-NGS Methyl-Seq DNA Library Kit products at -20 °C with the exception of Low EDTA TE solution, which is stored at room temperature.

To maximize use of enzyme reagents when ready to use, remove enzyme tubes from -20 °C storage and place on ice, NOT in a cryocooler, for at least 10 minutes to allow enzymes to reach 4 °C prior to pipetting. Attempting to pipette enzymes at -20 °C may result in a shortage of enzyme reagents.

After thawing reagents to 4 °C, briefly vortex (except the enzymes) to mix them well. Spin all tubes in a microfuge to collect contents prior to opening.

IMPORTANT!

- Assemble all reagent master mixes ON ICE and scale volumes as appropriate, using 5% excess volume to compensate for pipetting loss. To calculate the total volume of the master mixes, use our [Accel-NGS Methyl-Seq Master Mixing Volume Calculator](#), and prepare them in advance to ensure the magnetic beads do not over-dry during size selection steps.
 - Always add reagents to the master mix in the specified order as stated throughout the Protocol. Index X, or D50X/D7XX (Combinatorial Dual index primers) or U001-U096 (Unique Dual index primer) are the only reagents that are added individually to each sample.

Tips and Techniques

Size Selection During Clean-Up Steps

This protocol has been validated with SPRiselect beads (Beckman Coulter), but can be used with Agencourt AMPure® XP (Beckman Coulter). If other beads are used, solutions and conditions for DNA binding may differ. Consider the information below for performing efficient size selection:

- Prior to performing the library preparation workflow, analyze the samples' size distribution by electrophoretic methods to determine the median fragment size of your dsDNA samples.
- The size selections utilized in this protocol perform a Left Side Size Selection to remove small fragments and unused adapter (see Appendix, Section B for modified bead ratios to retain fragments as small as 40 bp). For customizing size selection, please use [Beckman Coulter's SPRiselect User Guide](#) for desired conditions not included in this protocol.

! IMPORTANT!

For optimal removal of undesirable small fragments and unused adapter, users should perform clean-up steps in 1.5 mL tubes using 500 μ L of 80% ethanol solution to wash the beads. However, for inputs ≥ 1 ng, adequate small fragment and unused adapter removal can be achieved by clean-up steps performed in 0.2 mL PCR tubes using 180 μ L of 80% ethanol solution to wash the beads.

Recommended PCR Cycles

Below are examples of recommended PCR cycles for high quality genomic DNA for direct sequencing. Yields are approximate and will vary between sample types.

Input Material	Input Quantity (ng)	PCR Cycles	Average Yield (nM)
gDNA	100	4-6	≥ 4
	10	7-9	≥ 4
	1	11-13	≥ 4
	0.1	14-16	≥ 4
cfDNA	5	7-9	≥ 4

Input Material Considerations

The Accel-NGS Methyl-Seq DNA Library Kit designed for Illumina platforms enables the preparation of high complexity NGS libraries from bisulfite-converted input DNA.

For direct sequencing applications, the Accel-NGS Methyl-Seq Kit has been validated for an input range of 100 pg-100 ng gDNA and ≥ 5 ng cfDNA. Please use the recommended PCR cycles for 5 ng cfDNA to estimate the number of PCR cycles needed when using larger cfDNA input quantities.

Enrichment methods generally require higher input quantities. The Accel-NGS Methyl-Seq Kit has been validated for an input range of 1 ng-100 ng DNA for hybridization capture with NimbleGen SeqCap Epi (see Appendix, Section A for modifications to the standard protocol). For RRBS, we recommend using at least 50 ng of input gDNA, as a significant amount of sample loss is expected during the enzymatic digestion and size selection steps.

! IMPORTANT!

Please consider genome complexity and sample quality when choosing input DNA quantity. Although libraries may be successfully prepared from ultra-low inputs, reduced representation of genome complexity may occur.

It is recommended to use the highest input available for best results. The Accel-NGS Methyl-Seq Kit has been validated with up to 100 ng of starting input material. If using more than 100 ng of input material, please contact Technical Support for recommended modifications to the Protocol.

Prepare the DNA Sample

Input DNA Quantification

For high quality samples, it is recommended to determine dsDNA concentration using Qubit, or a similar fluorometric method, as it will accurately represent the double-stranded, adaptable DNA content of the sample. For cfDNA or low quality DNA samples, we recommend quantification by qPCR using the Alu primer pairs provided in this kit (see [Input DNA Quantification Assay](#)) to accurately assess the usable amount of DNA in the samples and their integrity.

High Quality gDNA Quantify with Qubit or similar fluorometric method

ChIP DNA (Optional) Quantify with Qubit or similar fluorometric method

cfDNA Quantify by qPCR with Alu primer pairs
(see [Input DNA Quantification Assay](#))

FFPE DNA Quantify by qPCR with Alu primer pairs
(see [Input DNA Quantification Assay](#))

- We recommend using between 100 pg-100 ng input DNA per library preparation.
- After determining DNA concentration, proceed directly to the DNA fragmentation step.

! IMPORTANT!

- Input quantities referenced in this Protocol refer to total DNA quantified prior to DNA fragmentation.
- Unmethylated lambda gDNA must be spiked into the sample gDNA prior to fragmentation. For samples that do not require fragmentation (cfDNA), lambda gDNA may be separately fragmented to a size similar to that of the fragments in the sample. We recommend a spike in level of 0.5% (w/w), as specified in the Standards and Guidelines for Whole Genome Shotgun Bisulfite Sequencing (roadmapepigenomics.org/protocols).

DNA Fragmentation

If working with cfDNA or samples that have already undergone mechanical or enzymatic fragmentation, such as ChIP DNA, this step may be omitted.

Input Material	Fragmentation	Supported Fragment Size (bp)
High Quality gDNA	✓	200, 350, 650
ChIP DNA	—	200, 350, 650
cfDNA	—	165
FFPE DNA	✓	200, 350, 650

When working with high molecular weight genomic DNA, the DNA must be fragmented prior to library preparation. Fragmentation may be performed via mechanical shearing, such as sonica-

tion, or through enzymatic digestion methods to produce 650 or 350 bp DNA fragments (direct sequencing) or 200 bp DNA fragments (NimbleGen SeqCap Epi hybridization capture; see Appendix, Section A for modifications to standard protocol). If using other fragment size, please contact TechSupport@swiftbiosci.com for clean-up bead ratio recommendations. This kit has been specifically validated using Covaris®-fragmented DNA.

For RRBS applications, Mspl will be used to enzymatically fragment gDNA, followed by DNA purification and isolation of small fragments (100-220 bp).

For cfDNA samples, fragmentation is not necessary. Proceed directly to the bisulfite conversion step.

We do not recommend omitting the fragmentation step. Fragmentation of gDNA using bisulfite treatment alone produces a wider size distribution of fragments than that produced with mechanical or enzymatic shearing. This relatively wide size distribution constitutes some library molecules that are too large for efficient cluster generation on the flow cell, resulting in reduced cluster density. For this reason, if the fragmentation step is omitted, please consider performing a 2-sided size selection prior to library preparation to narrow the size distribution.

Note: The size selection may result in loss of a portion of your samples. Consider starting with a larger amount of DNA to compensate for the DNA loss.

We recommend analyzing the sheared DNA samples prior to library preparation using electrophoretic methods.

Optional Concentration Step

If you have performed enzymatic fragmentation or your fragmented DNA concentration is too low to provide sufficient quantity in the starting volume specified in the BS conversion kit, concentrate with Zymo Research DNA Clean & Concentrator™ or other method and elute in appropriate volume of Low EDTA TE buffer. Otherwise, proceed directly to the bisulfite conversion step.

Bisulfite Conversion

Our Accel-NGS Methyl-Seq product has been validated using the EZ DNA Methylation-Gold Kit following the manufacturer's instructions. Accel-NGS Methyl-Seq **has not been validated** with the QIAGEN EpiTect® Bisulfite kit or other conversion kits that contain nucleic acid carriers which may interfere with the Accel-NGS Methyl-Seq protocol.

Input quantities and PCR cycling recommendations are based on $\geq 50\%$ recovery of input DNA from the EZ DNA Methylation-Gold Kit. If using another bisulfite conversion kit, become familiar with percent DNA recovery to ensure a sufficient quantity of bisulfite-converted DNA for library synthesis. We recommend quantifying the amount of DNA recovered using a NanoDrop on the RNA setting after bisulfite conversion. Low input quantities (less than 100 ng) may not be detectable on the NanoDrop. It is important to note that DNA will be single-stranded following bisulfite conversion.

For cfDNA samples, quantification after bisulfite conversion is not required. Proceed with the entire bisulfite-converted cfDNA sample into the denaturation step below.

! **IMPORTANT!**

The first step of the Accel-NGS Methyl-Seq library prep requires a DNA volume of 15 μ L.

Be sure to note the volume for final elution of bisulfite-converted DNA in Low EDTA TE solution to prevent sample over-dilution.

Prepare the Reagent Master Mixes and Ethanol

1. To create the master mix, scale reagent volumes as appropriate, using 5% excess volume to compensate for pipetting loss. To calculate the total volume of the master mixes based on the number of reactions of choice, use our [Accel-NGS Methyl-Seq Master Mixing Volume Calculator](#). This tool automatically incorporates 5% excess volume to compensate for pipetting loss.
 2. To assemble reagent master mixes for the Adaptase, Extension, Ligation, and Indexing PCR steps, ensure the reagent vials are at room temperature and enzymes are at 4 °C. After thawing reagents, briefly vortex (except the enzymes) to mix them well. Spin tubes in a microfuge to collect contents prior to opening. Add reagents in order listed when preparing master mix. Once prepared, master mixes should be stored ON ICE until used.
 3. Prepare a fresh 80% ethanol solution using 200-proof/absolute ethanol and nuclease-free water. Approximately 2.0 mL of 80% ethanol solution will be used per sample.
-

! **IMPORTANT!**

Prepare the reagents in advance to ensure the magnetic beads do not dry out during size selection steps. Always add reagents in specified order. This applies to all reagents except for the indexed adapter primers provided separately in the indexed adapter kit that should be added individually to uniquely index each library.

BEGIN YOUR ACCEL-NGS METHYL-SEQ PROTOCOL

Prepare the DNA Libraries

Denaturation

1. Due to the short incubation time of the Denaturation step, pre-assemble all of the reagents of the Adaptase Reaction Mix (see next step for recipe), and place on ice.
2. Pre-heat the thermocycler to 95 °C.
3. Transfer the fragmented, bisulfite-converted DNA sample to a 0.2 mL PCR tube and adjust the volume of the sample to a final volume of 15 µl using Low EDTA TE, if necessary.
4. Place the samples in the thermocycler, programmed at 95 °C for 2 minutes with lid heating ON.
5. Upon completion, place tube(s) on ice immediately for 2 minutes. Proceed directly to the Adaptase step to preserve the maximum amount of ssDNA substrate.

④ Adaptase

6. Load the Adaptase Thermocycler Program on the thermocycler and pause it at the first step to pre-heat to 37 °C until all samples are loaded.

Assembly Order	Reagents	Volume per Sample
Pre-assemble	Low EDTA TE	11.5 µl
	④ Buffer G1	4.0 µl
	④ Reagent G2	4.0 µl
	④ Reagent G3	2.5 µl
	④ Enzyme G4	1.0 µl
	④ Enzyme G5	1.0 µl
	④ Enzyme G6	1.0 µl
Total Volume		25.0 µl

7. Add 25 µl of the pre-assembled Adaptase Reaction Mix to each PCR tube containing a 15 µl DNA sample and mix by pipetting or gentle vortexing until homogeneous. Spin down.
8. Place the samples in the thermocycler and run the program, with **lid heating ON**.

Thermocycler Program
37 °C, 15 min
95 °C, 2 min
4 °C hold

Extension

- Load the Extension Thermocycler Program on the thermocycler and pause it at the first step to pre-heat to 98 °C until all samples are loaded.
- Add 44 µl of the already pre-mixed Extension Reaction Mix (listed in the table below) to each PCR tube containing 40 µl of the Adaptase Reaction, using reagents in the order listed.

Reagents	Volume per Sample
Reagent Y1	2 µl
Enzyme Y2	42 µl
Total Volume	44 µl

- Mix by pipetting or gentle vortexing until homogenous. Spin down.
- Place the samples in the thermocycler and run the program, with **lid heating ON**.

Thermocycler Program
98 °C, 1 min
62 °C, 2 min
65 °C, 5 min
4 °C hold

- Transfer each sample to a 1.5 mL tube and clean up the Extension Reaction using beads and freshly prepared 80% ethanol. See Appendix, Section C for instructions. Follow the clean-up instructions below.

Input	Number of Clean-ups	Sample Volume	Bead Volume	Elution Volume
cfDNA ≥ 10 ng gDNA	Single clean-up	84 µl	101 µl (ratio: 1.2)	15 µl
cfDNA < 10 ng gDNA	1st clean-up	84 µl	101 µl (ratio: 1.2)	50 µl
	2nd clean-up	50 µl	60 µl (ratio: 1.2)	15 µl

Ligation

- Add 15 µl of the pre-mixed Ligation Reaction Mix (listed in the table below) to a new PCR tube containing 15 µl of the Post-Extension eluate. For the Ligation Reaction Mix, use reagents in the order listed below and note **Enzyme B3 should be added to the master mix just before use**.

Assembly Order	Reagents	Volume per Sample
Pre-assemble	Buffer B1	3 µl
	Reagent B2	10 µl
Add just before use	Enzyme B3	2 µl
	Total Volume	15 µl

- Mix by pipetting or gentle vortexing until homogenous. Spin down.
- Place the samples in the thermocycler programmed at 25 °C for 15 minutes with **lid heating ON**, followed by a 4 °C hold
- Transfer each sample to a 1.5 mL tube and clean up the Ligation Reaction using beads and freshly prepared 80% ethanol. See Appendix, Section C for instructions. Follow the clean-up instructions below.

Input	Sample Volume	Bead Volume	Elution Volume
cfDNA	30 µl	36 µl (ratio: 1.2)	20 µl
gDNA	30 µl	30 µl (ratio: 1.0)	20 µl

Indexing PCR

- Add 5 µl of the appropriate indexed adapter primer(s) directly to each sample.

Reagents	Volume Added to Each Sample (Using Cat. No. 36024)	Volume Added to Each Sample (Using Cat. No. 38096)	Volume added to each sample (Using Cat. No 39096 & 390384)
Index X	5 µl	—	—
Index D50X	—	2.5 µl	—
Index D7XX	—	2.5 µl	—
Index U001-U096	—	—	5 µl

IMPORTANT!

The indexed adapter primers are provided separately as part of the Indexed Adapter Kit.

- Add 25 µl of the already pre-mixed Indexing PCR Reaction Mix (listed in the table below) to each PCR tube containing 25 µl of sample, using reagents in the order listed below. **Enzyme R3 should be added to the master mix just before use.**

Assembly Order	Reagents	Volume per Sample
Pre-assemble	Low EDTA TE	10 µl
	● Buffer R1	10 µl
	● Reagent R2	4 µl
Add just before use	● Enzyme R3	1 µl
	Total Volume	25 µl

- Mix by pipetting or gentle vortexing until homogenous. Spin down.
- Place the samples in the thermocycler and run the program, with **lid heating ON**.

! IMPORTANT!

The number of cycles required to produce enough library for sequencing will depend on input quantity and quality. In the case of low quality samples including FFPE, the number of cycles required may vary based on the quality of the sample and amount of usable DNA present. Approximate guidelines for high quality DNA are as indicated below, but the exact number of cycles required must be determined by the user.

Input	Recommended PCR Cycles	Thermocycler Program
5 ng cfDNA	7-9	98 °C for 30 seconds
100 ng gDNA	4-6	PCR Cycles:
10 ng gDNA	7-9	98 °C for 10 seconds
1 ng gDNA	11-13	60 °C for 30 seconds
100 pg gDNA	14-16	68 °C for 60 seconds
		Hold at 4 °C

22. Transfer each sample to a 1.5 mL tube and clean up the Indexing PCR Reaction using beads and freshly prepared 80% ethanol. See Appendix, Section C for instructions. Follow the clean-up instructions below.

Input	Sample Volume	Bead Volume	Elution Volume
cfDNA	50 µl	40.0 µl (ratio: 0.8)	20 µl
gDNA	50 µl	42.5 µl (ratio: 0.85)	20 µl

Perform two SPRI clean ups instead of one if sequencing on patterned flow cells, according to the following specifications.

Input	Number of Clean-ups	Sample Volume	Bead Volume	Elution Volume
cfDNA	1st clean-up	50 µl	40.0 µl (ratio: 0.8)	50 µl
	2nd clean-up	50 µl	40.0 µl (ratio: 0.8)	20 µl
gDNA	1st clean-up	50 µl	42.5 µl (ratio: 0.85)	50 µl
	2nd clean-up	50 µl	42.5 µl (ratio: 0.85)	20 µl

This modification is recommended only if sequencing on patterned flow cells because reduction of indexing PCR primer carryover into the ExAmp clustering reaction reduces index hopping overall. This modification is not required if sequencing on non-patterned flow cells.

Sequence the DNA Libraries

Expected Results

It is normal to observe a size shift for converted libraries relative to unconverted libraries. This is due to further fragmentation of input DNA during the bisulfite conversion process. Representative Bioanalyzer traces of libraries produced by Accel-NGS are shown here. We recommend using the High Sensitivity Chip or similar.

Library Quantification

Accurate library quantification is essential to properly load the sequencing instrument. Libraries can be quantified using electrophoresis or qPCR-based methods. Electrophoresis-based methods also allow examination of library molecule size distribution. There are many commercially-available qPCR kits available for library quantification. Following the recommended PCR cycles will result in a library concentration of at least 4 nM.

Instrument Compatibility

Libraries prepared with the Accel-NGS Methyl-Seq DNA Library Kit should be sequenced as follows. These precautions consistently lead to highly successful sequencing runs with Q-scores above 90%:

- **MiniSeq:** Use a 20-40% spike in of PhiX or a balanced, high complexity library.
- **MiSeq:** Use a 10% spike in of PhiX or a balanced, high complexity library.
- **NextSeq 500:** Use a 20-40% spike in of PhiX or a balanced, high complexity library.
- **HiSeq 2500:** Use a 10% spike in of PhiX or a balanced, high complexity library.
- **HiSeq 4000/X Ten:** This instrument utilizes a patterned flow cell with a fixed read length of 150 bp PE. For proper cluster formation, we recommend utilizing libraries with a final insert size of approximately 350 bp. Use a 10-20% spike in of PhiX or a balanced, high complexity library. Depending on the RTA version, users may experience low quality scores for Read 2. Please contact Illumina technical support for recommendations.
- **Novaseq:** Use a 25% spike-in of Phix, or a balanced, high complexity library.

These recommendations are subject to change, depending on the version of sequencer software. Please contact Illumina technical support for recommendations.

IMPORTANT!

To ensure optimal mapping efficiency and precise methylation information, bioinformatic trimming of the low complexity “Adaptase tail” from these libraries is required. See Appendix, Section E.

Appendix

Section A: NimbleGen SeqCap Epi Hybridization Capture

Modifications to the standard Accel-NGS Methyl-Seq protocol are necessary when constructing libraries for enrichment by NimbleGen SeqCap Epi. In addition to specific input fragmentation and bead volumes, please use the amplification polymerase provided in the SeqCap Epi Accessory Kit (Cat. No. 07145519001/07185707001) for Pre-Hybridization LM-PCR during the Indexing PCR Step of this protocol. NimbleGen SeqCap Epi hybridization requires the use of single indexing (Swift Cat. No. 36024) for compatibility.

- 1-12. For steps 1-12, follow the instructions outlined in the standard protocol.
13. Transfer each sample to a 1.5 mL tube and clean up the Extension Reaction using beads and freshly prepared 80% ethanol. See Appendix, Section C for instructions. Follow the clean-up instructions below.

Insert Size	Sample Volume	Bead Volume	Elution Volume
200 bp (SeqCap Epi)	84 µl	101 µl (ratio: 1.2)	15 µl

- 14-16. For steps 14-16, follow the instructions outlined in the standard protocol.
17. Transfer each sample to a 1.5 mL tube and clean up the Ligation Reaction using beads and freshly prepared 80% ethanol. See Appendix, Section C for instructions. Follow the clean-up instructions below.

Insert Size	Sample Volume	Bead Volume	Elution Volume
200 bp (SeqCap Epi)	30 µl	36 µl (ratio: 1.2)	20 µl

18. Add 5 µl of the appropriate indexed adapter primer(s) directly to each sample.

Reagents	Volume Added to Each Sample (Using Cat. No. 36024)
Index X	5 µl

! IMPORTANT!

The indexed adapter primers are provided separately as part of the Indexed Adapter Kit.

19. Add 25 µl of the already pre-mixed Indexing PCR Reaction Mix (listed in the table below) to each PCR tube containing 25 µl of sample, using reagents in the order listed below. **KAPA HiFi HotStart Uracil+ ReadyMix should be added to the master mix just before use.**

Assembly Order	Reagents	Volume per Sample
Add just before use	KAPA HiFi HotStart Uracil+ ReadyMix (2x)	25 µl
	Total Volume	50 µl

20. Mix by pipetting or gentle vortexing until homogenous. Spin down.
21. Place the samples in the thermocycler and run the program, with lid heating ON.

! IMPORTANT!

The number of cycles required to produce enough library for sequencing will depend on input quantity and quality. In the case of low quality samples including FFPE, the number of cycles required may vary based on the quality of the sample and amount of usable DNA present. Approximate guidelines for high quality DNA are as indicated above, but the exact number of cycles required must be determined by the user.

Input	Recommended PCR Cycles	Thermocycler Program
100 ng gDNA	11-13	95 °C for 30 seconds
10 ng gDNA	14-16	PCR Cycles: 98 °C for 10 seconds
1 ng gDNA	17-19	60 °C for 30 seconds 72 °C for 60 seconds Hold at 4 °C

22. Transfer each sample to a 1.5 mL tube and clean up the Indexing PCR Reaction using beads and freshly prepared 80% ethanol. See Appendix, Section C for instructions. Follow the clean-up instructions below.

Insert Size	Sample Volume	Bead Volume	Elution Volume
200 bp (SeqCap Epi)	50 µl	60.0 µl (ratio: 1.2)	20 µl

Perform two SPRI clean-ups instead of one if sequencing on patterned flow cells, according to the following specifications.

Number of Clean-ups	Sample Volume	Bead Volume	Elution Volume
1st clean-up	50 µl	60.0 µl (ratio: 1.2)	50 µl
2nd clean-up	50 µl	60.0 µl (ratio: 1.2)	20 µl

Section B: Small Fragment (≥ 40 bp) Retention

Modifications to the standard Accel-NGS Methyl-Seq protocol are necessary when constructing libraries from samples with small fragments. Please use these bead volumes to retain DNA fragments as small as 40 bp. This may result in increased adapter dimer presence in the final library.

- 1-12. For steps 1-12, follow the instructions outlined in the standard protocol.
13. Transfer each sample to a 1.5 mL tube and clean up the Extension Reaction using beads and freshly prepared 80% ethanol. See Appendix, Section C for instructions. Follow the clean-up instructions below.

Sample Volume	Bead Volume	Elution Volume
84 μ l	151 μ l (ratio: 1.8)	15 μ l

- 14-16. For steps 14-16, follow the instructions outlined in the standard protocol.
17. Transfer each sample to a 1.5 mL tube and clean up the Ligation Reaction using beads and freshly prepared 80% ethanol. See Appendix, Section C for instructions. Follow the clean-up instructions below.

Sample Volume	Bead Volume	Elution Volume
30 μ l	48 μ l (ratio: 1.6)	20 μ l

- 18-21. For steps 18-21, follow the instructions outlined in the standard protocol.
22. Transfer each sample to a 1.5 mL tube and clean up the Indexing PCR Reaction using beads and freshly prepared 80% ethanol. See Appendix, Section C for instructions. Follow the clean-up instructions below.

Sample Volume	Bead Volume	Elution Volume
50 μ l	80.0 μ l (ratio: 1.6)	20 μ l

Perform two SPRI clean-ups instead of one if sequencing on patterned flow cells, according to the following specifications.

Number of Clean-ups	Sample Volume	Bead Volume	Elution Volume
1st clean-up	50 μ l	80.0 μ l (ratio: 1.6)	50 μ l
2nd clean-up	50 μ l	80.0 μ l (ratio: 1.6)	20 μ l

Section C: Size Selection/Clean-up Protocol

Please use the following protocol for each clean-up step, substituting the correct **Sample Volume**, **Bead Volume**, and **Elution Volume** based on the table provided for each section.

1. Ensure the magnetic beads are at room temperature and vortex beads to homogenize the suspension before use.
2. Transfer each Sample Volume to a 1.5 mL tube.
3. Add the specified Bead Volume to each sample. Mix by vortexing. Quick spin the samples in a tabletop microcentrifuge.
4. Incubate the samples for 5 minutes at room temperature (off the magnet).
5. Place the sample on a magnetic rack until the solution clears and a pellet is formed (~ 2 minutes).
6. Remove and discard the supernatant without disturbing the pellet (less than 5 μ l may be left behind). Leave the tubes on the magnet.
7. Add 500 μ l of freshly prepared 80% ethanol solution to the sample while it is still on the magnetic rack. Use care not to disturb the pellet. Incubate for 30 seconds, and then carefully remove the ethanol solution.
8. Repeat step 7 once more for a second wash with the 80% ethanol solution.
9. Quick spin the samples in a tabletop microcentrifuge and place back on the magnetic rack. Remove any residual ethanol solution from the bottom of the tube.
10. Add the specified Elution Volume of Low EDTA TE buffer and re-suspend the pellet. Mix well by pipetting up and down until homogenous. Incubate at room temperature for 2 minutes off the magnet, then place the tube on the magnet.
11. Transfer the entire eluate to a new 0.2 mL PCR tube. Ensure that eluate does not contain magnetic beads (indicated by brown coloration in the eluate). If magnetic beads are present, pipette eluate into a new tube, place on magnet, and transfer eluate again.

Post-Extension Clean-Up

Input	Number of Clean-ups	Sample Volume	Bead Volume	Elution Volume
cfDNA ≥ 10 ng gDNA	Single clean-up	84 μ l	101 μ l (ratio: 1.2)	15 μ l
< 10 ng gDNA	1st clean-up	84 μ l	101 μ l (ratio: 1.2)	50 μ l
	2nd clean-up	50 μ l	60 μ l (ratio: 1.2)	15 μ l

Post-Ligation Clean-Up

Input	Sample Volume	Bead Volume	Elution Volume
cfDNA	30 µl	36 µl (ratio: 1.2)	20 µl
gDNA	30 µl	30 µl (ratio: 1.0)	20 µl

Post-Indexing PCR Clean-Up

Input	Sample Volume	Bead Volume	Elution Volume
cfDNA	50 µl	40 µl (ratio: 0.8)	20 µl
gDNA	50 µl	42.5 µl (ratio: 0.85)	20 µl

Perform two SPRI clean ups instead of one if sequencing on patterned flow cells, according to the following specifications.

Input	Number of Clean-ups	Sample Volume	Bead Volume	Elution Volume
cfDNA	1st clean-up	50 µl	40.0 µl (ratio: 0.8)	50 µl
	2nd clean-up	50 µl	40.0 µl (ratio: 0.8)	20 µl
gDNA	1st clean-up	50 µl	42.5 µl (ratio: 0.85)	50 µl
	2nd clean-up	50 µl	42.5 µl (ratio: 0.85)	20 µl

Section D: Indexing Kits (Cat. No. 36024, 38096, 39096, and 390384)

During the Indexing PCR step, you must use a unique indexed adapter primer Index X, D50X/D7XX, or U001-U096 to label each library. If no multiplex sequencing is being performed, all libraries may be labeled with a single index only. Libraries made with uniquely indexed adapters may be multiplexed during cluster generation and co-sequenced on the same Illumina flow cell. The full-length adapter sequences of the single and combinatorial dual indices, where the underlined text is replaced by the indexed adapter sequences in the tables below are as follows.

P5 TruSeq® LT Adapter:

5' **AATGATA**CGCGACCACCGAGATCTACACTCTTCCCTACACGACGCTTCCGATCT

P7 TruSeq LT Adapter (I2, I4, I5, I6, I7, I12):

5' **GATCGGAAGAGC**ACACGTCTGAACCTCCAGTCACXXXXXX(XX)CTCGTATGCCGTCTCTGCTTG

P7 TruSeq LT Adapter (I13, I14, I15, I16, I18, I19):

5' **GATCGGAAGAGC**ACACGTCTGAACCTCCAGTCACXXXXXX(XX)ATCTCGTATGCCGTCTCTGCTTG

The number on the product tube label indicates which indexed adapter is provided in the tube. The bases in parentheses are not considered part of the 6 bp index sequences, but can be used for 8 bp index reads.

Set A Adapters	Sequence	Cat. No. 36024
Index (I2)	CGATGT(AT)	11 µl
Index (I4)	TGACCCA(AT)	11 µl
Index (I5)	ACAGTG(AT)	11 µl

Set A Adapters	Sequence	Cat. No. 36024
Index (I6)	GCCAAT(AT)	11 µl
Index (I7)	CAGATC(AT)	11 µl
Index (I12)	CTTGTA(AT)	11 µl
Index (I13)	AGTCAA(CA)	11 µl
Index (I14)	AGTTCC(GT)	11 µl
Index (I15)	ATGTCA(GA)	11 µl
Index (I16)	CCGTCC(CG)	11 µl
Index (I18)	GTCCGC(AC)	11 µl
Index (I19)	GTGAAA(CG)	11 µl

P5 TruSeq HT Adapter (D501-D508):

5' **AATGATACGGCGACCACCGAGATCTACACXXXXXXXXACACTCTTCCCTACACGACGCTTCCGATCT**

P7 TruSeq LT Adapter (D701-D712):

5' **GATCGGAAGAGCACACGTCTGAACCTCCAGTCACXXXXXXXXATCTCGTATGCCGTCTCTGCTTG**

Dual Index Adapters	Sequence	Cat. No. 38096
Index D501	TATAGCCT	33 µl
Index D502	ATAGAGGC	33 µl
Index D503	CCTATCCT	33 µl
Index D504	GGCTCTGA	33 µl
Index D505	AGGCGAAG	33 µl
Index D506	TAATCTTA	33 µl
Index D507	CAGGACGT	33 µl
Index D508	GTACTGAC	33 µl
Index D701	ATTACTCG	22 µl
Index D702	TCCGGAGA	22 µl
Index D703	CGCTCATT	22 µl
Index D704	GAGATTCC	22 µl
Index D705	ATTCAGAA	22 µl
Index D706	GAATTCTG	22 µl
Index D707	CTGAAGCT	22 µl
Index D708	TAATGCGC	22 µl
Index D709	CGGCTATG	22 µl
Index D710	TCCGGCAA	22 µl
Index D711	TCTCGCGC	22 µl
Index D712	AGCGATAG	22 µl

The following are the full-length adapter sequences of the unique dual indices (UDI)

Index 1 (i7) Adapters:

GATCGGAAGAGCACACGTCTGAACCTCCAGTCACXXXXXXXXATCTCGTATGCCGTCTCTGCTTG

Index 2 (i5) Adapters:

AATGATACGGCGACCACCGAGATCTACACXXXXXXXXACACTCTTCCCTACACGACGCTTCCGATCT

UDI #	i7 Index Sequence	i5 Index Sequence	UDI #	i7 Index Sequence	i5 Index Sequence
U001	CAACACAG	CTTCACAT	U049	TCCAGTCG	TACTTCGG
U002	ACACCTCA	CACCCAAA	U050	TGTATGCG	TGAACTGG
U003	ACCATAGG	TCGAACTG	U051	TCATTGAG	TTGGTATG
U004	CAGGTAGG	TTGACTCT	U052	TGGCTCAG	TAACGCTG
U005	AACCCACA	TCTCGGTT	U053	TATGCCAG	TTCCATTG
U006	TAGTCTCG	ATCACGTT	U054	TCAGATTG	TGTGGTTG
U007	CAGTCACA	AGCCAACT	U055	GGTTGGAC	TACAGGAT
U008	CCAAACAT	CCACATTG	U056	GACACTTA	TTCCGTCT
U009	ACATGCCA	TTGAGCTC	U057	GCTATGGA	TGCGATCT
U010	ATTCCGCT	TGACCGTT	U058	GTAAACCGA	TGCAATAGT
U011	CAAGGTAC	GCAACCAT	U059	GGCAAGCA	TGATACGT
U012	CCATGAAC	CGCCTTAT	U060	GAACGACA	TCGAGCGT
U013	TCAGCCTT	CTTGCTTC	U061	CGCTCGAA	TTGGAGGT
U014	CAGTCTT	CCGACAAG	U062	AAGGGCAT	TCTGCTGT
U015	CTCGAAC	CACTCGAG	U063	CAGGCATT	TGTACCTT
U016	ACAGTTCG	CTGTACGG	U064	AACTGTAT	TGGTTGTT
U017	ATCCTTCC	CATGAATG	U065	ATGCTTGA	TAGCTTGT
U018	CGAAGTCA	CTATCATG	U066	AGTATCTG	ACTTGATG
U019	CTCTATCG	CCACCGAT	U067	ATGTAATG	CAGATCTG
U020	ACTCTCCA	CCTAGTAT	U068	ACACATGT	GCCAATGT
U021	TCCTCATG	CAAGACCT	U069	ATAGCACG	ACAGTGGT
U022	AAACAACG	CGCTTCC	U070	ATATTGTA	TTAGGCAT
U023	CTCGTCT	CCGTTATC	U071	CAATTGAT	CGATGTTT
U024	TCAGTAGG	AGTCTGTA	U072	CACGTCGT	GCTTCACA
U025	GCTTCACA	CACGTCGT	U073	AGTCTGTA	TCAGTAGG
U026	CGATGTTT	CAATTGAT	U074	CCGTTATC	CTCGTCT
U027	TTAGGCAT	ATATTGTA	U075	CGCTTCC	AAACAACG
U028	ACAGTGGT	ATAGCACG	U076	CAAGACCT	TCCTCATG
U029	GCCAATGT	ACACATGT	U077	CCTAGTAT	ACTCTCCA
U030	CAGATCTG	ATGTAATG	U078	CCACCGAT	CTCTATCG
U031	ACTTGATG	AGTATCTG	U079	CTATCATG	CGAAGTCA
U032	TAGCTTGT	ATGCTTGA	U080	CATGAATG	ATCCTTCC
U033	TGGTTGTT	AACTGTAT	U081	CTGTACGG	ACAGTTCG
U034	TGTACCTT	CAGGCTT	U082	CACTCGAG	CTCGAAC
U035	TCTGCTGT	AAAGGGAT	U083	CCGACAAG	CAGTCTT
U036	TTGGAGGT	GCGTCAA	U084	CTTGCTTC	TCAGCTT
U037	TCGAGCGT	GAACGACA	U085	CGCCTTAT	CCATGAAC
U038	TGATACGT	GGCAAGCA	U086	GCAACCAT	CAAGGTAC
U039	TGCAATGT	GTAACCGA	U087	TGACCGTT	ATTCCGCT
U040	TGCGATCT	GCTATGGA	U088	TTGAGCTC	ACATGCCA
U041	TTCTGCT	GACACTTA	U089	CCACATTG	CCAACACT
U042	TACAGGAT	GGTTGGAC	U090	AGCCAACT	CAGTCACA
U043	TGTGGTTG	TCAGATTG	U091	ATCACGTT	TAGTCTCG
U044	TTCCATTG	TATGCCAG	U092	TCTCGGTT	AACGCACA
U045	TAACGCTG	TGGCTCAG	U093	TTGACTCT	CAGGTAAG
U046	TTGGTATG	TCATTGAG	U094	TCGAAGTG	ACCATAGG
U047	TGAACCTG	TGTATGCG	U095	CACCCAAA	ACACCTCA
U048	TACTTCGG	TCCAGTCG	U096	CTTCACAT	CAACACAG

During library prep, make sure to note which indexed adapter you are using with your sample and do not use the same indexed adapter on two different samples you plan to multiplex together.

Section E: Data Analysis and Informatics

Swift Biosciences' Adaptase technology, used in the Accel-NGS Methyl-Seq DNA Library Kit, adds a low complexity polynucleotide tail with an average length of 8 bases to the 3' end of each fragment during the addition of the first NGS adapter molecule. If these tails are not trimmed bioinformatically from the sequencing data, it is normal and expected to observe them at the beginning of Read 2 (R2). When read length is close to fragment size, the tail may also be observed toward the end of Read 1 (R1) data.

For specific tail trimming recommendations, please consult our Technical Note titled [“Accel-NGS 1S Plus and Methyl-Seq: Tail Trimming for Better Data”](#).

Illumina sequencing chemistry, which uses the initial base of each read to perform cluster registration and establish focus and color balance, is sensitive to low complexity base composition at the start of the read. Therefore, it is important to sequence Accel-NGS Methyl-Seq libraries on the MiSeq using MiSeq Software Updater v2.2.0.2 (containing RTA v.1.17.28 rel. 3/18/2013) or later. If using the HiSeq, adding a high-complexity spike-in is recommended. These precautions consistently lead to highly successful sequencing runs with Q-scores above 90%. Quality control software, such as FastQC (Babraham Bioinformatics), may raise “per base sequence content” or “per base GC content” flags at the beginning of R2. These flags are expected due to the low complexity tail.

The Accel-NGS Methyl-Seq Kit adds bases to 3' termini during the Adaptase tailing step, including unmethylated cytosines. This tail adds both artifactual sequence and methylation information to the dataset. Therefore, trimming is required for Accel-NGS Methyl-Seq libraries to obtain improved mapping efficiency (with tools like Bismark or BSMAP) and precise methylation information.

Many informatics pipelines for our Accel-NGS Methyl-Seq library analysis already include trimming of up to 10 bases from the beginning of both R1 and R2 to eliminate any artifactual cytosine methylation introduced as a result of filling in overhangs during end repair steps of conventional dsDNA library preparation and low quality bases due to bisulfite treatment.

Section F: Helpful Information and Troubleshooting

Problem	Possible Cause	Suggested Remedy
Incomplete resuspension of beads after ethanol wash during SPRI™ steps.	Over-drying of beads.	<ul style="list-style-type: none">Continue pipetting the liquid over the beads to break up clumps for complete resuspension.
Shortage of enzyme reagents.	Pipetting enzymes at -20 °C instead of 0-4 °C.	<ul style="list-style-type: none">Allow enzyme reagents to equilibrate to 0-4 °C for 10 minutes prior to pipetting.
Low library yields.	Inaccurate input quantification	<ul style="list-style-type: none">Quantify DNA with Qubit prior to bisulfite conversion
	Significant loss of library following Covaris shearing	<ul style="list-style-type: none">Perform post-shearing clean-up step with 1.8X-2.0X ratio of SPRI beads to maximize recovery of fragmented DNA.
	Less than 50% recovery from bisulfite conversion.	<ul style="list-style-type: none">Quantify DNA present before and after conversion. Add more DNA into conversion or increase number of PCR cycles if recovering less than 50%
Low quality sample.	Low quality sample.	<ul style="list-style-type: none">Use the Alu primers included in the Acceler-NGS kit to determine quality of sample and adjust input quantity accordingly.
	Suboptimal performance of SPRI clean-up steps	<ul style="list-style-type: none">Ensure that all residual ethanol is removed by performing a spin down of the beads after the second wash.Ensure that beads do not over-dry during ethanol wash steps.Ensure that the reaction warms to room temperature prior to starting SPRI clean-up step.Ensure adequate time (5 minutes) is allowed for DNA-bead binding while off magnet.Ensure adequate time (2 minutes) is allowed for resuspension of DNA in Low EDTA TE solution.Ensure that no eluate is left behind during tube transfer.
Use of the included polymerase for pre-hybridization PCR amplification		<ul style="list-style-type: none">For libraries going into NimbleGen SeqCap Epi hybridization capture, ensure that you are using the amplification polymerase provided in the SeqCap Epi Accessory Kit (Cat. No. 07145519001/07185707001) for Pre-Hybridization LM-PCR during the Indexing PCR Step of this protocol.

If you experience problems with your library prep, please contact us at TechSupport@swiftbiosci.com, or by phone at 734.330.2568 (9:00 am-5:00 pm ET, Monday-Friday).

General Warranty

Swift Biosciences, Inc. ("Swift") warrants that its products meet Swift's specifications at the time of delivery. Any sample or model used in connection with Swift's product literature is for illustrative purposes only and does not constitute a warranty that the products will conform to the sample or model.

To the maximum extent permitted by applicable law, Swift hereby expressly disclaims, and the buyer hereby expressly waives, any warranty regarding results obtained through the use of the products including, without limitation, any claim of inaccurate, invalid, or incomplete results. All other warranties, representations, terms and conditions (statutory, express, implied or otherwise) as to quality, condition, description, merchantability, fitness for purpose, or non-infringement (except for the implied warranty of title) are hereby expressly excluded.

All warranty claims on products must be made in writing within ninety (90) days of receipt of the products. Swift's sole liability and the buyer's exclusive remedy for a breach of this warranty is limited to replacement or refund at the sole option of Swift.

The warranties identified in this paragraph are Swift's sole and exclusive warranties with respect to the products and are in lieu of all other warranties, statutory, express or implied, all of which other warranties are expressly disclaimed, including without limitation any implied warranty of merchantability, fitness for a particular purpose, non-infringement, or regarding results obtained through the use of any product (including, without limitation, any claim of inaccurate, invalid or incomplete results), whether arising from a statute or otherwise in law or from a course of performance, dealing or usage of trade.

Limitation of Liability

Swift Biosciences, Inc. ("Swift") shall have no liability under the warranties cited above with respect to any defect in the products arising from: (i) specifications or materials supplied by the buyer; (ii) wilful damage or negligence of the buyer or its employees or agents; (iii) abnormal working conditions at the buyer's premises; (iv) failure to follow Swift's use restrictions or instructions (whether oral or in writing); (v) misuse or alteration of the products without Swift's approval; or (vi) if the buyer is in breach of its payment obligations in regards to purchasing the products.

To the fullest extent allowed by law, in no event shall Swift be liable, whether in contract, tort, strict liability, negligence, warranty, or under any statute or on any other basis for any special, incidental, indirect, exemplary, punitive, multiple or consequential damages sustained by the buyer or any other person or entity arising out of or caused by product, Swift's performance or failure to perform its obligations relating to the purchase of product or performance of services, Swift's breach of these terms, the possession or use of any product, or the performance by Swift of any services, whether or not foreseeable and whether or not Swift is advised of the possibility of such damages, including without limitation damages arising from or related to loss of use, loss of data, downtime, procurement of substitute products or services, or for loss of revenue, profits, goodwill, or business or other financial loss.

The total liability of Swift arising under or in connection with the purchase of the products, including for any breach of contractual obligations and/or any misrepresentation, misstatement or tortious act or omission (including without limitation, negligence and liability for infringement of any third party intellectual property rights) shall be limited to damages in an amount equal to the amount paid to Swift under the purchase agreement.

The exclusion of liability shall apply only to the extent not prohibited by applicable law.

Notice to Purchaser: Limited License

This product is for research use only and is licensed to the user under Swift Biosciences intellectual property only for the purchaser's internal purposes. Not for use in diagnostic procedures.

Swift Biosciences, Inc.

674 S. Wagner Road • Ann Arbor, MI 48103 • 734.330.2568 • www.swiftbiosci.com

© 2018, Swift Biosciences, Inc. The Swift logo and Adaptase are trademarks and Accel-NGS is a registered trademark of Swift Biosciences. Accel-NGS Methyl-Seq DNA Library Kit is covered by one or more claims of US Patent No(s). 9,896,709. This product is for Research Use Only. Not for use in diagnostic procedures. Illumina, HiSeq, MiniSeq, MiSeq, NextSeq, and TruSeq are registered trademarks of Illumina, Inc. NimbleGen and SeqCap are trademarks of Zymo Research. SureSelect^{XT} is a product of Agilent Technologies. Agencourt and AMPure are registered trademarks and SPRI, SPRIPlate, and SPRIselect are trademarks of Beckman Coulter, Inc. NanoDrop and Qubit are registered trademarks and DynaMag is a trademark of Thermo Fisher Scientific, Inc. Covaris is a registered trademark of Covaris, Inc. EpiTect is a registered trademark of QIAGEN. iTaq is a trademark of Bio-Rad Laboratories, Inc. Oligonucleotide sequences © 2016 Illumina, Inc. All rights reserved. PRT-019 Rev 1